(3.238.249.17) 您好!臺灣時間:2021/04/12 12:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃致凱
研究生(外文):Huang Chih Kai
論文名稱:以溶膠凝膠法製備高電壓變阻器之研究
論文名稱(外文):Fabricate high voltage varistor by using the sol-gel method
指導教授:李偉雄李偉雄引用關係
指導教授(外文):Woei-Shyong Lee
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:92
中文關鍵詞:氧化鋅變阻器溶膠-凝膠法
外文關鍵詞:zinc oxidevaristorsol-gel
相關次數:
  • 被引用被引用:2
  • 點閱點閱:143
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以溶膠-凝膠法製備氧化鋅變阻器前驅體粉末,再經煅燒、研磨、乾燥、壓片、燒結、塗電極、接引線等步驟製作氧化鋅變阻器。以溶膠-凝膠法製備之氧化鋅變阻器前驅體粉末具有較佳的均勻性及較小的粒徑。由研究結果顯示,在前驅體粉末製備過程中,選用之硝酸鋅與乙二醇的莫耳比維持於1比7以上時,可得到較穩定的凝膠,凝膠經煅燒後之前驅體粉末平均粒徑約為20nm。在變阻器製備過程中,燒結溫度則以950℃較佳,持溫時間維持1小時可獲得較佳結構的變阻器。以溶膠-凝膠法製作之變阻器經I-V 電性量測,測得之崩潰電場可達895V/mm,非線性係數 值達58,較以一般傳統法製備粉末而成之變阻器高出許多。在脈衝電壓測試下,每20ns時間下瞬間反應出4kV的電壓。因此,由結果顯示以溶膠-凝膠法製備之變阻器粉末,可應用於高電流傳輸線路上及電磁脈衝防護之突波抑制器。
The varistor precursor powders was fabricated by using the sol-gel method followed by calcination, ball milling, drying, pressing, sintering, electrode coating, and lead connecting to make a ZnO-based varistor. The more uniform and smaller particle size powders were made by sol-gel method. The experimental results showed that the stable gel was obtained during the precursor making step if the molar ratio of zinc nitrate to ethylene glycol was kept above 1:7. Furthermore, the mean particle size of the precursor powders was approximately 20nm after calcination of the gel. During the varistor preparation, the ZnO-based varistor with the better structure were obtained when the sintering temperature and the holding time was kept at 950℃ and one hour, respectively. The varistor through the sol-gel process has a high breakdown voltage 895V/mm and a nonlinear coefficient 58 compared to those through the conventional mixed oxide method.
Through the pulse wave tests, the largest breakdown voltage is 4kV in the response time of 20ns. The experimental results reveal that the ZnO-based varistors with a high breakdown field through a sol-gel method can be applied on the use of high current circuits and the surge suppressor for the electromagnetic pulse protection.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 viii
圖目錄 ix
1. 緒論 1
1.1 前言 1
1.2 電磁脈衝之產生 2
1.3 電磁脈衝之傳播及其影響 2
1.4 研究動機及論文架構 2
2. 文獻回顧 4
2.1 氧化鋅變阻器的製備 4
2.1.1 固相法 4
2.1.2 溶液法 5
2.1.2.1 共沉澱法 5
2.1.2.2 溶膠凝膠法 6
2.1.2.3 膠體懸浮離心分離法 6
2.2 變阻器前驅體之製備方法比較 6
3. 理論背景 8
3.1 氧化鋅的晶體結構 8
3.2 溶膠凝膠法 9
3.3 變阻器原理簡介 15
3.3.1 非線性I-V特性 16
3.3.2 非線性係數α 19
3.3.3 變阻器的添加物和影響 19
3.4 變阻器的微結構 22
3.4.1 微結構對變阻器性能的重要性 23
3.4.2 變阻器微結構的相 23
3.4.3 變阻器微結構的晶界 24
3.4.4 燒結期間微結構的形成 25
3.4.5 變阻器的應用領域 25
3.5 檢測設備原理簡介 27
3.5.1 XRD原理 27
3.5.2 SEM原理 30
3.5.3 TEM原理 31
3.5.4 ICP-AES原理 33
4. 實驗部份 34
4.1 溶膠凝膠法製備氧化鋅變阻器 34
4.1.1 實驗藥品 34
4.1.2 實驗儀器設備 34
4.1.3 實驗過程 35
4.2 傳統法製備變阻器 41
4.2.1 實驗藥品 41
4.2.2 實驗儀器設備 41
4.2.3 實驗過程 42
4.3 微結構與特性分析 43
4.3.1 熱重-熱差分析 43
4.3.2 傅立葉紅外線光譜分析 43
4.3.3 X光繞射分析 43
4.3.4 掃描式電子顯微鏡分析 43
4.3.5 TEM表面型態分析 44
4.3.6 感應耦合電漿-原子發射光譜分析 45
4.3.7 電性量測 45
4.3.8 7kV脈衝量測 45
5. 結果與討論 47
5.1 溶膠凝膠法製程探討 47
5.1.1 pH值對材料之影響 47
5.1.2 TGA-DTA量測之結果 48
5.1.3 FTIR量測之結果 50
5.1.4 TEM量測之結果 54
5.2 不同製程之微結構及變阻性質比較 54
5.2.1 XRD量測之結果 54
5.2.2 SEM量測之結果 58
5.2.3 電性I-V量測之結果 68
5.2.4 7kV pulse量測之結果 81
6. 結論 86
參考文獻 88
[1] Lauf, R. J. and Bond, W. D., “Fabrication of High Field Zinc Oxide Varistors by Sol-Gel Processing,” Am. Ceram. Soc. Bull, Vol. 63, pp.278-281, 1984.
[2] Karakas, Y. and Lee, W. E., “Processing and Phase Evolution in ZnO Varistor Prepared by Oxide Coprecipitation,” British Ceramic Transactions, Vol. 93, pp. 65-70, 1994.
[3] 洪文通,“通電設備電磁脈衝防護之研究”,碩士論文,國防大學中正理工學院電子工程研究所,桃園,2002。
[4] 余尉平,“電磁脈衝防護元件與電路研究”,碩士論文,國防大學中正理工學院電子工程研究所,桃園,2003。
[5] 汪建民,陶瓷技術手冊(上),中華民國粉末冶金協會,台北,第512-514頁,1999。
[6] Matsuoka, M., “Nonohmic Properties of Zinc Oxide Ceramics,” Jan. J. of Appl. Phys, Vol. 10, pp. 736-746, June, 1971.
[7] Brankovic, Z., Milosevic, O., Uskokovic, D., Poleti, D., Karanovic, Lj., “Nanostructured Constituents of ZnO-Based Varistors Prepared by Mechanical Attrition,” NanoStructured Materials, Vol. 4, pp. 149-157, 1994.
[8] Fah, C. P. and Wang, J., “Effect of High-Energy Mechanical Activation on the Microstructure and Electrical Properties of ZnO-Based Varistors,” Solid State Ionics, Vol. 132, pp. 107-117, 2000.
[9] Sonder, E. and Quinby, T. C., “ZnO Varistors Made from Powders Produced Using a Urea Process,” Am. Ceram. Soc. Bull, Vol. 64, pp. 665-668, 1985.
[10] Dosch, R. G., Tuttle, B. A., and Brooks, R. A., “Chemical Preparation and Properties of High-Field ZnO Varistors,” J. Mater. Res, Vol. 1, pp. 90, 1996.
[11] Halle, S. M., Johnson, D. W., Wiseman, G. H. and Bowen, H. K., “Aqueous Precipitation of Spherical ZnO Powders for Varistors Applications,” J. Am Ceram.Soc, Vol. 72, pp. 2004, 1989.
[12] Karakas, Y. and Lee, W. E., “Processing and Phase Evolution in ZnO Varistors Prepared by Oxide Coprecipitation,” British Ceramic Transactions, Vol. 93, pp. 65-70, 1994.
[13] Bai, S. N., Shieh, J. S., and Tseng, T. Y., “Characteristic Analysis of ZnO Varistors Made with Spherical Precipitation Powders,” Materials Chemistry and Physics, Vol. 41, pp. 104-109, 1995.
[14] Shi, J., Cao, Q., Wei, Y. and Huang, Y., “ZnO Varistors Manufactured by Composite Nano-Additives,” Materials Science and Engineering, Vol. 99, pp. 344-347, 2003.
[15] Hohenberger, G. and Tomandl, G., “Sol-Gel Processing of Varistors Powders,” J. Mater. Res, vol. 7, pp. 736-746, Mar, 1992.
[16] Sinha, A. and Sharma, B. P., “Novel Route for Preparation of High Voltage Varistors Powder,” Materials Research Bulletin, Vol. 32, pp. 1571-1579, 1997.
[17] Duran, P., Capel, F., Tartaj, J., and Moure C., “Low-Temperature Fully Dense and Electrical Properties of Doped-ZnO Varistors by a Polymerized Complex Method,” Journal of the European Ceramic Society, Vol. 22, pp. 67-77, 2002.
[18] Viswanath, R. N., Ramasamy, S., and Ramamoorthy, R., “Preparation and Characterization of Nanocrystalline ZnO Based Materials for Varistors Applications,” NanoStructured Materials, Vol. 6, pp. 993-996, 1995.
[19] Harloff, J., “Zinc Oxide Varistors,” Physical properties of ceramics, pp. 1-28, 1995.
[20] 邱碧秀,電子陶瓷材料,徐氏基金會,台北,第222頁,1988。
[21] 陳慧英、黃定加、朱秦億“溶膠凝膠法在薄膜製備上之應用”,化工技術,第七卷,第十一期,第152-167頁,1999。
[22] 劉海濤等編著,無機材料合成,化學工業出版社,北京,第284頁,2003。
[23] 陳秀蓮,“以化學法製備均一粒徑氧化鋅粉體與發光特性之研究”,碩士論文,國立台灣科技大學化工研究所,台北,2003。
[24] Levinson, L. M. and Philipp, H. R., “The Physics of Metal Oxide Varistors,” J. Appl. Phys, Vol. 46, pp. 1332, 1975.
[25] Levinson, L. M. and Philipp, H. R., “Zinc Oxide Varistors-A Review,” Am. Cer. Soc. Bull, Vol. 65, pp. 639,1986.
[26] Levinson, L. M. and Philipp, H. R., “ZnO Varistors for Transient Protection,” IEEE Transactions on Parts, Hybrids, and Packaging, Vol. 10, pp. 338-343, December, 1977.
[27] Lorenz, A., Ott, J., Harrer, M., Preissner, E. A., Whitehead, A. H., and Schreiber, M., “Modified Citrate Gel Route to ZnO-Based Varistors,” Journal of the European Ceramiz Society, Vol. 21, pp. 1887-1891, 2001.
[28] Tsai, Y. L. and Huang, C. L., “Improvement of Nonlinearity in a ZnO Varistor by Al2O3 Cloping,” J. Met. Sci. Let, pp. 1305, 1985.
[29] Hennings, D. K. and Hartung. R., “Grain Size Control in Low-Voltage Varistor,” J. Am. Ceram. Soc, pp. 645, 1990.
[30] Eda, K., “Zinc Oxide Varistors,” IEEE Electrical Insulation Magazine , Vol. 5, pp. 28-41, November, 1989.
[31] 邱碧秀,“半導體陶瓷”,粉末冶金會刊,第十九卷,第二期,第109-125頁,1994。
[32] 林麗娟,“材料之X光繞射分析”,材料與社會,第六十二期,第73-79頁,1992。
[33] 瞿宗耀,“掃描式電子顯微鏡”,材料與社會,第六十二期,第50-55頁,1992。
[34] 鄭新讚,儀器分析Ⅱ,全華科技圖書股份有限公司,台北,第42-50頁,2003。
[35] Mendelson, M. I., “Average Grain Size in Polycrystalline Ceramics,” J. Am. Ceram. Soc, Vol. 52, pp. 443-446, 1969.
[36] Sinha, A. and Sharma, B. P., “Novel Route for Preparation of High Voltage Varistor Powder,” Mat. Res. Bulletin, Vol. 32, pp. 1571-1579, 1997.
[37] Bandyopadhyay, S., Paul, G. K., Roy, R., Sen, S. K., and Sen, S., “Study of Structural and Electrical Properties of Grain-Boundary Modified ZnO Films Prepared by Sol-Gel Technique,” Mat. Chem. Phys, Vol. 74, pp.83-91, 2002.
[38] 邱秀碧,“用sol-gel法製作之氧化鋅變阻體微觀結構和電性分析”,國科會專題研究計劃成果報告,新竹市, 1990。
[39] 喬治、麥林泰爾、翁瑞裕,紅外線光譜分析法,高立出版社,台北,第191-259頁,2001。
[40] German, R. M., “Powder Metallurgy Science,” Metal Powder Industries Federation, Princeton, New Jersey, pp. 145, 1984.
[41] 謝正賢,“利用共沉粉末製備氧化鋅變阻器之研究”,碩士論文,國立交通大學應用化學研究所,新竹,1990。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔