跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/18 13:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉逸群
論文名稱:以陰離子聚合法合成星狀聚合物及奈米複材之研究
論文名稱(外文):Synthesis of Star Polymer and Nanocomposites via Anionic Polymerization
指導教授:蔣見超
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:162
中文關鍵詞:飽合型的星狀聚異戊二烯非線性嵌段共聚高分子氯甲基苯乙烯絕對分子量奈米複材奈米碳管
外文關鍵詞:saturated star-shaped polyisoprenePom-Pom shaped block copolymerp-chloromethylstyreneabsolute molecular weightnanocompositescarbon nanotubes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:454
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
論文的一開始(第四章)乃是以陰離子聚合法合成一種新類型的黏度指數增進劑(VII),飽合型的星狀聚異戊二烯。此種黏度指數增進劑為一種新型飽和型星狀聚合物,主要製程技術在於: (1) 使用正丁基鋰行陰離子聚合法來製造聚異戊二烯當成星狀聚合物的高分子手臂,以及 (2)使用對苯二乙烯接合法以形成星狀星狀聚異戊二烯高分子,(3)利用氫化反應將聚異戊二烯高分子氫化成,飽和型星狀聚異戊二烯。
論文的第二階段(第五章)主要在研究星狀以及非線性嵌段共聚高分子(PS)nPI(PS)n的合成。利用氯甲基苯乙烯(p-chloromethyl styrene)將具有活性端的聚苯乙烯末端官能化後,使其成為末端帶有雙鍵的高分子手臂。然後再以正丁基鋰串聯這些末端帶有雙鍵的高分子手臂,使其成為well-defined的星狀聚合物。利用在核心的負電活性端,再加入異戊二烯則在主鏈長出線性的聚異戊二烯(polyisoprene) ,聚合物則會形成一雨傘狀的高分子(Umbrella polymer),其後再加入偶合劑1,2dibromethane將兩個雨傘狀的高分子彼此接合,以形成非線性Star-block-Linear-block-Star Pom-Pom copolymers, (PS)nPI(PS)n。
論文的第三階段(第六章)所提出的理論模式,係由分枝因數理論衍生而來,透過合成星狀聚合物包括4、5、6臂的SBS星狀共聚合物,與使用上階段的方式聚合5、7、9臂的PS星狀聚合物。以GPC所量測的相對分子量,和雷射光散射儀鑑定的絕對分子量交叉比對下,證明該理論模式對於星狀聚合物之分枝數與絕對分子量具有良好的預測能力。
論文的第四階段(第七章)為將奈米碳管表面酸化,然後再將碳管表面氯化,最後以陰離子聚合法將具有活性端的高分子接於已氯化的奈米碳管表面上。論文的第五階段(第八章)主要利用ferrocene的配位基交換原理與奈米碳管上的六角形碳平面進行配位,再對碳管上已配位的ferrocene以強鹼(BuLi) 進行離子化,接著再加入稍微過量的氯甲基苯乙烯(p-chloromethyl styrene)進行官能化反應,主要的目的為製造陰離子活性端可反應的環境。再以陰離子聚合技術將高分子接於已完成表面官能化的奈米碳管上,並且在此部分以貴重儀器如GC-MS、SEM、TEM等,對高分子接於的奈米碳管表面進行驗證及說明。
The first section of paper describes the synthesis of a new saturated star-shaped polyisoprene (Viscosity Index Improver─VII) via anionic polymerization. The overall process of making such a plymer consists of three major steps:(1) anionic polymerization using an n-BuLi initiator to form polymer arms;(2) linking reaction with divinylbenzene to form the star-shaped VII polymer; and (3) a hydrogenation reaction to eliminate the double bonds. Results from the characterization of the saturated star-shaped polyisoprene, including the degree of branching, linking efficiency, and viscosity index are presented and discussed.
The second section of paper concerns the novel method of preparing a star-shaped polystyrene and a Star-block-Linear-block-Star Pom-Pom shaped (PS)nPI(PS)n nonlinear block copolymer. The polystyrene macromonomer (SSTM) was obtained from a reaction of living polystyrene initiated with n-BuLi and terminated with p-chloromethylstyrene (p-CMS). The star-shaped polystyrene was produced by linking SSTM using again n-BuLi. After the addition of isoprene comb-shaped (PS)nPI nonlinear block copolymers were synthesized. Finally, the well-defined (PS)nPI(PS)n nonlinear block copolymers were made by coupling umbrella-shaped (PS)nPI 1,2-dibromoethane (DBE).
A novel GPC calculation method has been developed for characterizing star-shaped styrene-butadiene block copolymers (SBS) at the third section of paper. This method enables us to determine the absolute molecular weight of the synthesized polymer.
The fourth section of paper describes the method for preparing polystyrene-functionalized multiple-walled carbon nanotubes (MWNTs) by terminating anionically synthesized living polystyryllithium with acyl chlorides on the MWNTs. The acyl chlorides were in turn obtained from the carboxylation and acylation of the MWNTs.
In the last section MWNTs were chemically modified by a ligand exchange reaction of ferrocene. The modified MWNTs (Cp-Fe-MWNTs) were next monolithiated by t-butyllithium and terminated by p-chloromethylstyrene (pMS). The pMS-terminated species (pMS-Cp-Fe-MWNTs) were then functionalized with living polystyryllithium anions via anionic polymerization. The resulting polystyrene-functionalized MWNTs exhibited as polymeric nanocomposites and were soluble in common organic solvents showing distinct colors from a neat polystyrene solution. Syntheses results and the characterization data of the functionalized MWNTs, collected from GC-MS, NMR, electron microscopy, and optical spectroscopy, are presented and discussed.
中文摘要………………………………………………………………………..Ⅰ
英文摘要………………………………………………………………………..Ⅲ
目錄……………………………………………………………………………..Ⅴ
圖目錄…………………………………………………………………………..Ⅷ
表目錄……………………………………………………………………….….XⅡ
第一章 緒論………………………………………………….……………..…1
第二章 文獻回顧…………………………………………………………....…6
2-1 陰離子聚合反應簡介………………………………………………..….6
2-2 星狀聚合物聚合反應簡介…………………………………………….14
2-3 梳狀聚合物聚合反應簡介…………………………………………...18
2-4 H-shaped及Pom-Pom shaped polymer聚合反應簡介…….……….20
2-5 奈米碳管表面官能化之簡介……………………………………………..21
第三章 實驗內容………………………………………………….………...31
3-1 實驗藥品………………………………………………………………....31
3-2 實驗設備與分析儀器……………………………………………………33
3-3 合成飽和型星狀聚異戊二烯…………………………………………....36
3-4 合成Star-block-Linear-block-Star Pom-Pom Copolymers………….…...39
3-5 合成星狀SBS………………………………………………………..…..43
3-6 奈米碳管/PS複合材料之合成……………………………………….….44
3-7 奈米碳管/p-Methylstyrene複合材料之合成…………………….…...…47
第四章 飽和型星狀聚異戊二烯之研究……………………………..………50
4-1 DVB偶合行為的分析……………..……………………..….……..53
4-2 未飽和星狀異戊二烯聚合物之氫化反應………………………..….......56
4-3 飽和星狀異戊二烯聚合物之熱性質分析………………………….……57
4-4 飽和星狀異戊二烯聚合物之黏度指數測量………………….……..…..57
4-5 結論………………………………………………………………….……58
第五章 Star-block-Linear-block-Star Pom-Pom Copolymers
之研究……………………………………………….….……68
5-1 SSTM之鑑定分析…………………………………….…………….……71
5-2 SSTM聚合星狀聚苯乙烯之鑑定分析……………………..……………73
5-3 Star-block-Linear-block-Star Copolymers之鑑定分析…………..………74
5-4 Star-block-Linear-block-Star Copolymers之物性分析…………..………76
5-5 結論…………………………………………………………………..……78
第六章 GPC量測Styrenic星狀共聚合物絕對分子量之研究……..……93
6-1 基本原理介紹……………………………………………………..…..…..97
6-2 建立星狀聚合物手臂數的預測模型………………………………..…...100
6-3 線性SBS絕對分子量之計算……………………………………………104
6-4 Styrenic星狀共聚合物絕對分子量之計算……………………….……..106
6-5 結論……………………………………………………………………….107
第七章 以陰離子聚合法將PS接於已官能化奈
米碳管表面之研究……………………………………………117
7-1 多壁奈米碳管的酸化、氯化及MWNTs─PS之
鑑定分析………………………………………………………….……….120
7-2 MWNTs─PS之電子顯微鏡分析……………………………………..…122
7-3 MWNTs─PS之之熱性質分析…………………………………………..123
7-4 結論……………………………………………………………………….124
第八章 以陰離子聚合法合成奈米複合材料
之研究(Nanotube bond p-Methylstyrene)……………………....…133
8-1 MWNTs的官能化及PS-MWNTs之鑑定分析…………………..……..136
8-2 PS-MWNTs之光譜分析…………………………………………………138
8-3 PS-MWNTs之電子顯微鏡分析…………………………………………139
8-4 PS-MWNTs之熱性質分析………………………………………………139
8-5 結論……………………………………………………………………….140
參考文獻………………………………………………………………………..154
發表論文………………………………………………………………………..161
圖目錄
頁次
Figure 2-1 Models for alkyllithium compounds base on x-ray structures……26
Figure 4-1 GPC chromatogram for star-shaped (EP)star………………………60
Figure 4-2 Effect of temperature on linking efficiency under typicallinking conditions: [DVB]/[n-BuLi]=3 and 0.35 wt% of THF……………………...61
Figure 4-3 FTIR spectra of the star molecule (sample A2) before and after hydrogenation……………………………………………………….…….…62
Figure 4-4 DSC thermograms of the star molecule (sample A2)
before and after hydrogenation……………………………….63
Figure 5-1 1H NMR spectrum of SSTM……………………………………....80
Figure 5-2 The molecular weight distribution variations of each procedure for synthesis of Star-block-Linear-block-Star Pom-Pom
copolymers (S)4PI(S)4……………………………………………………….81
Figure 5-3 Debye plot generated by MALLS for the
Star-block-Linear-block-Star Pom-Pom copolymers (S)4PI(S)4…….82
Figure 5-4 1H NMR spectrum of the Star-block-Linear-block-Star Pom-Pom copolymers (S)4PI(S)4……………………………………………………….83
Figure 5-5 TGA diagrams of the Star-block-Linear-block-Star Pom-Pom copolymers (S)nPI(S)n and the linear SIS copolymers. ……………………..84
Figure 5-6 DSC thermograms of the Star-block-Linear-block-Star Pom-Pom copolymers (S)4PI(S)4, the linear SIS copolymers and the Star-block-linear copolymers (S)4PI. ……………………………………………………….….85
Figure 5-7 Scanning electron micrographs (5000) of:(A)Star-block-Linear-block-Star Pom-Pom copolymers, (S)4PI(S)4
and (B) the linear SIS (a) copolymers. ………………………………………86
Figure 5-8 The frequency scans of the star-block-linear-block-star pom-pom copolymers (S)4PI(S)4 at 100℃……………………………………………...87
Figure 5-9 The frequency scans of the linear copolymers
SIS (a) at 100℃……………………………………………………...88
Figure 6-1 Linear SBS block copolymer…………………………………..…..108
Figure 6-2 Nearly monodispersed four-arm star-shaped
SBS block copolymer……………………………………………..109
Figure 6-3 Debye plot generated by the MALLs for the four-arm
SBS star polymer…………………………………………………...110
Figure 6-4 Nearly monodispersed nine-arm star-shaped
polystyrene, (S)9…………………………………………..111
Figure 6-5 Debye plot generated by the MALLs for nine-arm star-shaped polystyrene, (S)9……………………………………………………….112
Figure 6-6 Dependence of Marm, Mstar on f (or vice versa)……………………113
Figure 7-1 FTIR spectra of (a) original MWNTs, (b) chemical-oxidation modified MWNTs, (c) MWNTs─PS…………………………………………..…….125
Figure 7-2 The SEM/EDS spectrum of (a) purified MWNTs,
(b) MWNT-COOH (c) MWNT-COCl and (d) MWNT─PS.………………..126
Figure 7-3 The SEM image of pure MWNTs…………………………………128
Figure 7-4 The SEM image of (a) pure MWNTs (b) MWNT─PS……………129
Figure 7-5 The TEM image of polystyrene-functionalized MWNTs: (a)
scale bar = 200 nm and (b) scale bar = 20 nm. …………………..130
Figure 7-6 The SEM image of the thermally defunctionalized MWNT─PS………………………………………………………131
Figure 7-7 TGA results for polystyrene (-----), the original MWNTs (――) and the MWNT─PS (……). (10 °C/min under N2)………………………....132
Figure 8-1 The TEM image of the purified MWNTs. ( top) scale bar = 200 nm and ( bottom) scale bar = 10 nm………………………………………………....141
Figure 8-2 The SEM/EDS spectrum of complex (top) purified MWNTs (bottom) Cp-Fe-MWNTs (after in 1 M HCL aq. solution)……………………………142
Figure 8-3 (a) the gas chromatogram of Cp-Fe-MWNTs (b) mass spectrum of main peak of the chromatogram (c) mass spectrum of the physical mixture of MWNTs and ferrocene……..………………………………………………………….143
Figure 8-4 FTIR spectrum of pMS -Cp-Fe-MWNTs is compared with that of the purified MWNTs…………………………………………………………….145
Figure 8-5 The GC-MS spectrum of pMS-Cp-Fe-MWNTs…………………...146
Figure 8-6 GPC chromatogram for parent PS polymers and PS-MWNTs filtrate ( passes through a 0.1 μm filter and with the concentration of 20mg/20mL)………………………………………………………...147
Figure 8-7 UV/vis absorption spectrum of PS-functionalized MWNTs in room temperature cyclohexane solution. Shown in the inset is a Lambert-Beer’s law plot at 300 nm……………………………………………………………….148
Figure 8-8 1H NMR spectrum of PS-functionalized MWNTs is compared with that of the parent PS polymers in deuterated chloroform………………………..149
Figure 8-9 An SEM image of the solid precipitate obtained from the PS-functionalizedMWNTs and PS/MWNTs physical…………..…150
Figure 8-10 TEM images of PS-functionalized MWNTs……………………..152
Figure 8-11 TGA traces (heating rate 10 °C/min in continuous nitrogen flow) of the purified MWNTs, freeocene, Cp-Fe-MWNTs, pMS-Cp-Fe-MWNTs, the PS-functionalized MWNTs sample, and the parent PS polymer sample ….153
表目錄
頁次
Table 2-1 Aggregation states of organolithium compounds in
hydrocarbons solution………………………………………………..27
Table 2-2 Aggregation states and bond lengths of organolithium
compounds in Lewis base solution…………………………………..28
Table 2-3 Linking method for anionic synthesis of
star-shaped polymer……………………………………………...…..29
Table 4-1 Effect of THF on linking efficiency……………………………….….64
Table 4-2 Molecular weight measurements for star-shaped (EP)star…………......65
Table 4-3 Thermal decomp osition temperatures of all samples under N2………66
Table 4-4 Characteristics of LN base oil containing 1wt% of (EP)star…………...67
Table 5-1 1H-NMR chemical shift of SSTM………………………………….…89
Table 5-2 Effect of THF and linking temperature on
linking efficiency……………………………………………….…90
Table 5-3 Molecular weight measurements for Star-shaped (S)star………………91
Table 5-4 The properties of the Pom-Pom copolymers (S)nPI(S)n
and the linear SIS copolymers measured by GPC and MALLS……...92
Table 6-1 Comparisons between “linear-polystyrene-equivalent” MWs and absolute MWs for linear SB copolymers……………………………………………....114
Table 6-2 MW measurements and determination of absolute MWs for star polymers using the GPC-UV/RI method developed in this work……………………115
Table 6-3 Direct measurements of absolute MWs for star
polymers using MALLS………………………………………………….116
1. Morton, M.; Heliminiale, T. E.; Gadkary, S. D. and Bueche, E., J.Polym.Sci, 1962, 57, 471.
2. Hadjichristidis, N.and Fetters, L.J. , Macromolecules, 1980, 13, 191.
3. Liu, J.; Rinzler, A. G.; Dai, H.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Macias-Rodriguez, F.; Shon, Y.-S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E., Science, 1998, 280, 1253.
4. Miyake, M.; Yasuda, K.; Kashihara, T.; Teranishi, T., Chem. Lett., 1999, 10, 1037.
5. Hsieh, H. L.; Quirk, R. P., Anionic Polymerization. Principles and Practical Applications, Marcel Dekker: New York, 1996.
6. Ziegler, K.; Jacov, L.; Wollthan, H.; Wenz, A., Ann. Chem. 1934,511, 64.
7. Szwarc, M., Nature ,1956, 178, 1168.
8. Bauer, B. J.; Fetters, L. J., Rubber Chem. Technol., 1978, 51, 406.
9. Graessley, W. W., Acc. Chem. Res., 1977, 10, 332.
10. Grest, G. S.; Fetters, L. J.; Huang, J. S., Adv. Chem. Phys., 1996,44, 67.
11. Milner, S. T.,Macromolecules, 1994, 27, 2333.
12. Schaefgen, J.R. and Foly, P.J.,J.Am.Chem.Soc, 1984, 70, 2709
13. Mishra, M. K.; Kobayashi, S. Ed.,Star and Hyperbranched Polymers, Marcel Dekker: 1999.
14. Hatada, K.; Kitayama, T. Vogl, O.,Macromolecular Design of Polymeric Materials, Marcel Dekker: 1997.
15. Rempp, P.; Franta, E.; Herz, J. E.,Adv. Polym. Sci., 1988, 86, 145.
16. Eschwey, H.; Hallensleben, M. L.; Burchard, W.,Makromol.Chem., 1973, 173, 235.
17. Burchard, W.; Eschwey, H., Polymer ,1975, 16, 180.
18. Lutz, P.; Rempp, P., Makromol. Chem., 1988, 189, 1051.
19. Tsitsilianis, C.; Lutz, P.; Graff, S.; Lamps, J. P.; Rempp, P., Macromolecules ,1991, 24, 5897.
20. Frater, D. J.; Mays, J. W.; Jackson, C. ,J. Polym. Sci. Polym. Phys.Ed., 1997, 35, 141.
21. Tung, L. H.; Lo, G. Y. S., Macromolecules, 1994, 27, 2219.
22. Tung, L. H.; Lo, G. Y. S., Macromolecules, 1994, 27, 1680.
23. Quirk, R. P.; Lee, B.; Schock, L. E., Makromol. Chem., Macromol.Symp., 1992, 53, 201.
24. Xenidou, M.; Hadjichristidis, N., Macromolecules, 1998, 31, 5690.
25. Hadjichristidis, N.; Xenidou, M.; Iatrou, H.; Pitsikalis, M.; Poulos, Y.; Avgeropoulos, A.; Sioula, S.; Paraskeva, S.; Velis, G.; Lohse, D. J.; Schultz, D. N.; Fetters, L. J.; Wright, P. J.; Mendelson, R. A.; Garcia-Franco, C. A.; Sun, T.; Ruff, C. J., Macromolecules, 2000, 33, 2424.
26. Ruckenstein, E.; Zhang, H., Macromolecules, 1999, 32, 6082.
27. Falk, J.; Schlott, R.; Hoeg, D. J., Macromol. Sci. Chem., 1973, 8, 1647.
28. Falk, J.; Hoeg, D. J.; Schlott, R.; Pendelton, J. F., Macromol. Sci. Chem., 1973, 8, 1669.
29. Falk, J.; Hoeg, D. J.; Schlott, R.; Pendelton, J. F., Rubber Chem. Technol., 1973, 46, 1044.
30. Hadjichristidis, N.: Roovers, J., J. Polym. Sci. Part A Polym. Chem., 1978, 16, 851.
31. Gido, S. P.; Lee, C.; Pochan, D. J.; Pispas, S.; Mays, J. W.; Hadjichristidis, N., Macromolecules, 1996, 29, 7022
32. Roovers, J.; Toporowski P. M., Macromolecules, 1981, 14, 1174.
33. Iatrou, H.; Avgeropoulos, A.; Hadjichristidis, N., Macromolecules, 1994, 27, 6232.
34. Avgeropoulos, A.; Hadjichristidis, N., J. Polym. Sci. Part A Polym. Chem., 1997, 35, 813.
35. Velis, G.; Hadjichristidis, N., Macromolecules, 1999, 32, 534.
36. Iijima, S., Nature, 1991, 354, 56.
37. Iijima, S., MRS Bullentin.,1994, 11, 43.
38. Saito, R. ;Dresselhaus G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotube , 1998
39. Treacy, M. M. J.; Ebbesen, T. W. ; Gibson, J. M., Nature , 1996, 381, 678.
40. Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C., Science , 1998, 282, 95.
41. Sun, Y.-P.; Huang, W.; Lin, Y.; Fu, K.; Kitaygorodskiy, A.; Riddle, L. A.; Yu, Y. J.; Carroll, D. L. ,Chem. Mater. , 2001, 13, 2864.
42. Fu, K.; Huang, W.; Lin, Y.; Riddle, L. A.; Carroll, D. L.; Sun, Y.-P. ,Nano.Lett. , 2001, 1, 439.
43. Sun, Y.; Wilson, S. R.; Schuster, D. I., J. Am. Chem. Soc., 2001, 123, 5348-5349.
44. Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley,R. E.; Tour, J. M. F. ,J. Am. Chem. Soc. ,2001, 123, 6536.
45. Bahr, J. L.; Tour, J. M., Chem. Mater. , 2001, 13, 3823.
46. Pekker, S.; Salvetat, J.-P.; Jakab, E.; Bonard, J.-M.; Forro´, L. , J. Phys. Chem. B, 2001, 105, 7938-7943.
47. Czerw, R.; Guo, Z.; Ajayan, P. M.; Sun, Y.-P.; Carroll, D. L. ,Nano Lett. , 2001, 1, 423.
48. Lin, Y.; Rao, A. M.; Sadanadan, B.; Kenik, E. A.; Sun, Y.-P. , J. Phys. Chem. B , 2002, 106, 1294.
49. Huang, W.; Lin, Y.; Taylor, S.; Gaillard, J.; Rao, A. M.; Sun, Y.-P. , Nano Lett. , 2002, 2, 231.
50. Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D. M.; Holzinger, M.; Hirsch, A., J.Am. Chem. Soc., 2002, 124, 760.
51. Litt, F. A., Lubrication Eng, 1986, 42, 287.
52. van der Waal, G., J Synth Lubrication, 1987, 4, 267.
53. Wang, T. Y.; Tsiang, R. C., J Appl Polym Sci, 2001,79, 1838.
54. Akhmedov, A. I.; Isakov, E. U., Chem Technol FuelsOils, 1989, 25, 156.
55. Ver Strate, G.; Struglinski, M. J., Proc ACS Div Polym Mat Sci Eng, 1989, 61, 252.
56. Eckert, R. J. A., U.S. Patent No. 4, 156, 673, May 29,1979.
57. Eckert, R. J. A., U.S. Patent No. 4, 116, 917, Sept. 26,1978.
58. Kiovsky, T. E., U.S. Patent No. 4, 077, 893, May 7,1978.
59. Storey, R. F.; Shoemake, K. A.; Mays, J. W.; Harville, S., J Polym Sci Part A Polym Chem , 1997, 35,3767.
60. Frater, D. J.; Mays, J. W.; Jackson, C., J Polym Sci Part B Polym Phys, 1997, 35, 141.
61. Storey, R. F.; Shoemake, K. A.; Chisholm, B. J., J Polym Sci Part A Polym Chem, 1996, 34, 2003.
62. Tsitsilianis, C.; Graff, S.; Rempp, P., Eur Polym J, 1991, 27, 243.
63. Omura, N.; Kennedy, J. P., Macromolecules, 1997,30, 3204.
64. Hoxmeier, R. J., U.S. Patent No. 4,879,349, 1989.
65. Breslow, D. S.; Matlack, A. S., U.S. Patent, No.3, 113, 986, 1963.
66. Wald, M. W.; Quam, M. G., U.S. Patent, No. 3, 595, 942,1971.
67. Hou, H.; Tsiang, R. C.; Hsieh, H. C., J Polym Sci Part A Polym Chem, 1997, 35, 2969.
68. Young, R. N.; Fetters, L. J., Macromolecules, 1978,11, 5, 899.
69. Takaki, M.; Asami, R.; Ichikawa, M., Macromolecules, 1997, 10, 850.
70. Kaminsky, W.; Arndt, M., Adv Polym Sci, 1997, 127, 143.
71. Endo, K.; Senoo, K., Polymer, 1999, 40, 5977.
72. Endo, K.; Senoo, K.; Takakura, Y. , Eur. Polym. J., 1999, 35, 1413.
73. Douglas, J. F.; Roovers, J.; Freed, K. F., Macromolecules, 1990, 23, 4168
74. Benoit, H.; Drubisic, Z.; Rempp, P.; Decker, D.;Zilliox, J., J Chem Phys Physico-Chem Biol , 1996, 63, 1057.
75. Brandrup, I.; Immergut, E. H., Polymer Handbook,3rd ed.; Wiley-Interscience: New York, 1989
76. Tung, L. H., J Appl Polym Sci, 1979, 24, 953.
77. Hendrickson, D. N.; Morrison, W. H., Jr., Ho, E. Y., J. Am. Chem. Soc., 1974, 96, 3603.
78. Kagan, H. B.; Guillaneux, D., J. Org. Chem., 1995, 60, 2502
79. Riggs, J. E.; Walker, D. B.;Carroll, D. L.; Sun, Y. P., J. Phys. Chem. B., 2000, 104, 7071.
80. Czerw, R.; Guo, Z. X.; Ajayan, P. M.; Sun, Y. P.; Carroll, D. L., Nano Lett. ,2001, 1, 423.
81. Lin, Y.; Rao, A. M.; Sadanadan, B.; Kenik, E. A.; Sun,Y. P., J. Phys. Chem. B., 2002, 106, 1294.
82. Sun, Y. P.; Huang, W.; Lin, Y.; Fu, K.; Kitaygorodskiy, A.; Riddle, L. A.; Yu, Y. J.; Carroll, D. L., Chem. Mater., 2001, 13, 2864.
83. Huang, W.; Lin,Y.; Taylor, S.; Gaillard, J.; Rao, A. M.; Sun, Y. P., Nano Lett., 2002, 2, 231.
84. Hill, D. E.; Lin,Y.; Rao, A.M.;Allard, L. F.; Sun, Y. P.,Macromolecules , 2002, 35, 9466.
85. G. Quack, L. J. Fetters, N. Hadjichristidis, and R. N. Young, Ind. Eng. Chem. Prod. Res. Dev., 1980, 19, 587.
86. Johnson, B. L. ;Adams, H. E. ;Weissert, F. C.; Farhat, K. Pro-ceedings of the International Rubber Conference, MacLaren and Sons, London, 1976.
87. J. E. L. Roovers and Bywater, Marcromolecules.,1972, 5, 385.
88. Orofino, T. A.; Wenger F., J. Phys. Chem., 1963, 67, 566.
89. Gervasi, J. A.; Gosnell, A. B., J. Polym. Sci., Part A, 1966, 4, 1391.
90. Meunier, J. C. ; Leemput, R. V., Makromol. Chem., 1971, 142, 1.
91. Herz, J. E.; Strazielle, C, C. R. Acad. Sci., Ser. C ,1971, 272, 747.
92. Strazielle, C.; Herz, J.,Eur. Polym. J., 1977, 13, 223.
93. Yen, S. P. S., Makromol. Chem., 1965, 81, 152.
94. Masuda, T.; Ohta, Y.; Onogi, S., Macromolecules. , 1971, 4, 763.
95. Worsfold, D. J.;Zilliox, J. G.; Rempp, P., Can. J. Chem., 1969, 47, 3379.
96. Kohler, A.; J. Polacek, A.; Koessler, T.; ZillIox, J. G.; Rempp, P., Eur. Polym. J., 1972, 8, 627.
97. Decker, D.; Rempp, P.; Hebd, C. R., Seances Acad. Sci., Ser. C, 1965, 261 1977.
98. Ghijsels, A;, J. Polym. Sci., Polym. Phys. ED., 1973,11, 1849
99. Hadjichristidis, N.; Guyot, A. Fetters, L. J., Macromolecules., 1978, 11, 889.
100. Quack, G.; Fetter, L. J., Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem., 1977 18, 558.
101. Hsieh, H. L.,Rubber Chem. Technol.,1976 49, 1305.
102. Zhang, J.; Zou, H.; Qing, Q.; Yang, Y.; Li, Q.; Liu, Z.; Guo, X.; Du, Z., J. Phys. Chem B., 2003, 107, 3712.
103. Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Lverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E., Science, 1998, 280, 1253.
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 孫吉珍、李從業、劉淑娟(民86)。施行羊膜穿刺術對高齡孕婦的意義。護理研究,5(2),171-180。
2. 曾麗慧(民81)。早期羊膜穿刺。醫學繼續教育,2(3),339-343。
3. 顏兆熊(民80)。高齡產婦 。國防醫學,12(1),55-60。
4. 楊玉娥(民84)。高血清胎兒蛋白孕婦接受羊膜穿刺術前後的主觀經驗。慈濟醫學,7,195-202。
5. 王章陵,〈中共報業體制的形成及其改革〉,《共黨問題研究》,第23卷第11期,1997年。
6. 王毓莉,〈改革開放後中國大陸大眾傳播事業之研究〉,《東亞季刊》,第27卷第3期,1996年。
7. 余康寧,〈大陸新聞出版業發展趨勢探索〉,《共黨問題研究》,第25卷第6期,1996年。
8. 李金銓,〈媒介市場與政治衝突:海峽兩岸新聞交流十年〉,《東亞季刊》,第29卷第2期,1998年,頁43-57。
9. 李瞻,〈共產報業的理論及其謬誤〉,《新聞學研究》,第五期,台北:國立政治大學新聞研究所,頁47-57。
10. 夏樂生,兩岸新聞交流的現況與展望。共黨問題研究,第21卷第7期,1995年,頁16-24。
11. 國安民,〈中國大陸網路普及化對和平演變的影響〉,《共黨問題研究》,第28卷第期,民國91年2月,頁86。
12. 曹玉玲,〈中共組織簡介一新華通訊社〉,《共黨問題研究》,第23卷第7期,1997年,頁89-98。
13. 陳皇寺,〈中國大陸新聞媒介在「國家發展」中所扮演的角色〉,《共黨問題研究》,第23卷第7期,1997年,頁41-51。
14. 曾振隆,〈中國大陸新聞理論與實錢之探討〉,《共黨問題研究》,第27卷第2期, 2001年,頁61-68。
15. 楊志弘,〈海峽兩岸新聞交流之探討〉,《報學》,第8卷第7期,頁71-79。