(3.236.228.250) 您好!臺灣時間:2021/04/13 12:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃建銘
研究生(外文):Huang Chien-Ming
論文名稱:以甲烷與五羰鐵連續式生長奈米碳管
論文名稱(外文):Continuous synthesis carbon nanotubes by use of methane and iron pentacarbonyl
指導教授:李元堯李元堯引用關係
指導教授(外文):Yuan-Yao Li
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:129
中文關鍵詞:甲烷五羰鐵奈米碳管連續式
外文關鍵詞:methaneIron pentacarbonylcarbon nanotubecontinuous
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究設計了一垂直連續式化學氣相沉積反應器,希望能大量生產高純度奈米碳管。文中共設計四套垂直式反應系統:(1)石英管直徑7cm之CVD系統、(2)噴入式CVD系統、(3)石英管直徑5cm之CVD系統、(4)逆流式CVD系統。而所使用之反應氣體為甲烷,在成長過程中,甲烷中的碳源與觸媒在高溫下會產生化學反應,促使碳-碳鍵因觸媒效應重新組合排列而堆疊成奈米碳管。我們主要探討不同反應器的碳源流速、載體流速、觸媒流量、溫度及壓力等製程參數條件對奈米碳管成長之影響。而在實驗中所得到的最大產量為4.4413g/hr,純度大約為40%,並且本研究也可藉由控制氣體流速而得到欲得到的碳管直徑大小。
在分析上,我們採用掃描式電子顯微鏡(SEM)來觀察奈米碳管的型態,以高解析穿透式電子顯微鏡(HR-TEM)鑑定奈米碳管的顯微結構,並使用EDS分析產物的成份。另外在實驗過程中收集出口端廢氣,並使用氣相層析儀(GC)及氣相質譜儀(GC-mass)分析氣體成份。
The purpose of this study is to use novel CVD reactors for fabrication of CNT. Various designed reactors were employed (1) a vertical of CVD with different inner diameter ; (2) a CVD reactor equipped spraying feed stock system ; (3)up-flow CVD system. Iron pentacarbonyl was used catalyst while methane was employed as the source of carbon.
The experiments were carried out with various operational conditions, such as the flow rate of methane, carried gas and catalyst, temperature and pressure, In order to find an optimal condition for the fabrication. As a result, it was found that the maximum amount of product was 4.44 g/hr under limited experiments. Scanning electron microscope (SEM) is used to observe analyze the microstructure of the CNTs.
誌謝..........................................................I
中文摘要.....................................................II
ABSTRACT....................................................III
目錄.........................................................IV
表目錄......................................................VII
圖目錄.....................................................VIII
第一章 緒論...................................................1
1.1 前言......................................................1
1.2 奈米碳管的發展與結構......................................2
1.3 奈米碳管的特性............................................6
1.3.1 機械性質................................................6
1.3.2 電傳導性................................................7
1.3.3熱傳導性.................................................9
1.4 奈米碳管的成長機制.......................................10
1.5 奈米碳管的製程方法.......................................13
1.5.1電弧放電法(Arc-discharge)...............................13
1.5.2 雷射氣化法(laser ablation method)......................14
1.5.3 化學氣相沉積法(Chemical vapor deposition ).............15
1.5.4 其它方法製作奈米碳管...................................16
1.6 奈米碳管的應用價值.......................................18
1.7 CVD製程回顧..............................................21
1.7.1 水平式高溫爐...........................................21
1.7.2 垂直式高溫爐...........................................23
1.7.3加裝噴嘴之高溫爐........................................24
1.8 研究動機.................................................29
第二章 實驗部分..............................................30
2.1實驗氣體與藥品............................................30
2.2 實驗裝置.................................................30
2.2.1垂直式高溫爐之化學氣相沉積裝置..........................31
2.2.2噴入式進料之CVD系統.....................................31
2.2.3逆流式CVD系統...........................................32
2.3 實驗步驟.................................................36
2.4 實驗條件.................................................38
2.5 產物的觀察與分析.........................................38
第三章、結果與討論...........................................41
3.1石英管內徑7CM之CVD系統....................................41
3.1.1 奈米碳管的微結構分析...................................41
3.1.2 甲烷流速對奈米碳管成長的影響...........................44
3.1.3 氮氣流速對奈米碳管成長的影響...........................46
3.1.4 觸媒流量對奈米碳管成長的影響...........................48
3.1.5 小結...................................................49
3.2噴入式進料之CVD系統.......................................50
3.2.1甲烷流速對奈米碳管成長的影響............................50
3.2.2 氮氣流速對奈米碳管成長的影響...........................51
3.2.3 觸媒流量對奈米碳管成長的影響...........................52
3.2.4 壓力對奈米碳管成長的影響...............................54
3.2.5 有無加裝噴嘴對奈米碳管成長的影響.......................55
3.2.6 小結...................................................56
3.3石英管內徑5CM之CVD系統....................................57
3.3.1 甲烷流速對奈米碳管成長的影響...........................57
3.3.2 氮氣流速對奈米碳管成長的影響...........................58
3.3.3 觸媒流量對奈米碳管成長的影響...........................59
3.3.4 石英管內徑大小對奈米碳管成長的影響.....................59
3.3.5 小結...................................................61
3.4 逆流式CVD系統............................................61
3.4.1 甲烷流速對奈米碳管成長的影響...........................62
3.4.2 氮氣流速對奈米碳管成長的影響...........................63
3.4.3 觸媒流量對奈米碳管成長的影響...........................65
3.4.4 壓力對奈米碳管成長的影響...............................66
3.4.5 溫度對奈米碳管成長的影響...............................67
3.4.6 進料流向對奈米碳管成長的影響...........................69
3.4.7 小結...................................................70
第四章、結論與未來展望.......................................71
4.1 結論.....................................................71
4.2 未來展望.................................................73
參考文獻....................................................126
[1] S. Iijima, 1991, Nature (London), 354, p. 56
[2] H. W. Kroto, J. R. Heath, S. C. O’Broan, R. F. Curl, and R. E. Smalley,
1985, Nature (London), 318, p. 162
[3] S. Iijima and T. Ichihashi, 1993, Nature, 363, p. 603
[4] D. S. Bethune, C. H. Kiang, M.S. deVries, G. Gorman, R. Saroy, J.
Vazguez, and R. Beyers, 1993, Nature, 363, p. 605
[5] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, 1995, Carbon, 33, p. 883
[6] J. C. Charlier and J. P. Issi, 1998, Applied Physics A:Materials Science &Processing, 67, p. 79
[7] M. D. Haus, G. Dresselhaus, P. Eklund, and R. Saito, 1998, Physics
World, January, p. 33
[8] J. W. Mintmire and C. T. White, 1998, Applied Physics A: Materials
Science & Processing, 67, p. 65
[9] M. R. Falvo, G. J. Clary, R. MII. Taylor, V. Chi, F. P. Brooks, S.
Washburn, R. Superfine, 1997, Nature, 389, p. 582
[10] M. Treacy, T. W. Ebesen, J. M. Gibson, 1996, Nature, Vol.:381, p. 678
[11] Sishen Xie, Wenzhi Li, Zhengwei Pan, Baohe Chang, Lianfeng Sun,
2000, J. Phys. Chem..solid, p. 1153
[12] M.M.J. Treacy, T.W.Ebbesen, J.M. Gibson, 1996, Nature 381, p. 678
[13] C.F. Cornwell, L.T. Wille, 1998, Computational Materials Science 10, pp. 42-45
[14] C.F. Cornwell, L.T. Wille, 1997, Solid State Commun, NO.8, pp. 555-558
[15] Y.I. Prylutskyy, S.S. Durov, O.V. Ogloblya, E.V. Buzaneva, P. Scharff,
2000, Computational Materials Science 17, pp. 352-355
[16] R.Saito, M. Fujita, G. Dresselhaus, and M. S Dresselhaus , 1992, Appl.
Phys. Lett. Vol.60, no.4, pp. 2204-2206
[17] J. W. G. Widoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker,
1998, Nature, 391, p. 59
[18] Kin-Tak Lau, David Hui, 2002, Composites: Part B 33, pp. 263-277
[19] Hongjie Dai, 2002, Surface Science 500, pp. 226-227
[20] R. S. Ruoff, D. C. Lorents, 1995, Carbon 33, No.7, pp. 925-930
[21] Shigeo Maruyama, 2002, Physica B 323, pp. 193-195
[22] J. Hone, M. Whitney, A. Zettl, 1999, Synthetic Metals 103, p. 2498
[23] D. H. OH, Y. H. Lee, 1998, “Physical Review B”, 58, p. 7407
[24] C Journet, WK Maser, P Bernier, A Loiseau, de la Chapelle ML, S Lefrant, 1997, Nature ;388, pp. 756-758
[25] AG Rinzler, J Liu, H Dai, P Nikolaev, Hu.man CB, Rodriguez- Macias FJ, 1998, Applied Physics A, 67(1), pp. 29-37
[26] P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, 1999, Chemical Physics Letters 313(1-2), pp. 91-97
[27] Z. F. Ren, Z. P. Huang, J. W. Xu, D. Z. Wang, J. G. Wen, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic, M. A. Reed, 1999, Applied Physics Letters, 75(8), pp. 1086-1088
[28] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M.P. Siegal, 1998, Science ;282, pp. 1105-1107
[29] Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal, P. N. Provencio, 1998, Applied Physics Letters, 73(26), pp. 3845-3847
[30] C. Journet, P. Bernier, 1998, Applied Physics A, 67, p. 169
[31] Ting Guo, 1995, Journal Physics Chemical, 99, pp. 10694-10697
[32] Kin-Tak Lau, David Hui, 2002, Composites : Part B, 33, pp. 263-277
[33] A. M. Cassell, J. A. Raymakers, J. Kong, H. Dai, 1999, Joural Physical
Chemistry B , Vol.:103, pp. 6484-6492
[34] W. Z. Li , S. S. Xie , L. X. Qian , B. H. Chang , B. S. Zou , W. Y. Zhou ,
R. A. Zhao, G. Wang, 1996, , Scince, Vol.274 , Issue 5293, pp.
1701-1703
[35] J. F. Colomer, C. Stephan , S. Lefrant , G. Van Tendeloo , I. Willems , Z.
Konya , A. Fonseca , Ch. Laurent , J. B.Nagy, 2000, Chemical Phycics
Letters, Vol.317, pp. 83-89
[36] X. S. Zeng, X. G. Sun, G. Cheng, X. S. Yan, X. L. Xu, 2002, Physica B,
323, pp. 330-332
[37] Y. L. Sun, X. B. Zhang, Y. S. Ning, F. Z. Kong, F. Liu, 2002, Journal of
Inorganic Materials , 17, 2, pp. 337-342
[38] K. Mukhopadhyay, G. N. Mathur, 2002, Journal Of Nanoscience And
Nanotechnology, 2, 2, pp. 197-201
[39] 李元堯,「21 世紀的尖端材料 - 奈米碳管 」,化工技術,第120期,第140-159頁,民國九十二年。
[40] C. Journet, P. Bernier, 1998, Applied Physics A, 67, pp. 1-9
[41] P. M Ajayan, T. W. Ebbesen, 1997, Rep. Prog. Phys, 60, pp. 1025-1062
[42] K. W. Hsu, J. P. Hare, M. Terrones, H. W. Kroto, D. R. M. Walton, P. J. F. Harris, 1995, Nature, 377(6551), p. 687
[43] K. W. Hsu, M. Terrones, J. P. Hare, H. Terrones, H. W. Kroto, D. R. M. Walton, 1996, Electrolytic formation of carbon nanostructures, 262(1-2), pp. 161-166
[44] D. Laplaze, P. Bernier, W. K. Maser, G. Flamant, T. Guillard, A. Loiseau, 1998, Carbon, 36(5-6), pp. 685-688
[45] O. P. Krivoruchko, N. I. Maksimova, V. I. Zaikovskii, A. Salanov, 2000, Carbon, 38(7), pp. 1075-1082
[46] W. S. Cho, E. Hamada, Y. Kondo, K. Takayanagi, 1996, Applied Physics Letters, 69(2), pp. 278-279
[47] R. Katoh, Y. Tasaka, E. Sekreta, M. Yumura, F. Ikazaki, Y. Kakudate, 1999, Ultrasonics Sonochemistry, 6(4), pp. 185-187
[48] P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, 1999, Chemical Physics Letters, 313, pp. 91-97
[49] M. J. Bronikowski , P. A. Willis, D. T. Colbert, K. A. Smith, R. E. Smalley, 2001, J. Vac. Sci. Technol. A , 19, pp. 1800-1805
[50] H. M. Cheng, F. Li, H. Y. Pan, L. L. He, X. Sun, M. S. Dresselhaus, 1998, Applied physics letters, 72, 25, pp. 3282-3284
[51] R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen, 1999, Chemical Physics Letters, 303, pp. 467-474
[52] C. J. Lee, S. C. Lyu, H. W. Kim, C. Y. Park, C. W. Yang, 2002, Chemical physics letters, 359, pp. 109-114
[53] H. Zhn , C. Xu , B. Wei , D. Wu, 2002, Carbon , 40, pp. 2023-2025
[54] H. Zhu, X. Li, C. Xu, D. Wu, 2002, Materials Research Bulletin, 37, pp. 177-183
[55] K. Bladh, L. K. L. Falk, F. Rohmund, 2000, Appl. Phys. A, 70, pp. 317-322
[56] K. Bladh, L. K. L. Falk, 2000, Appl. Phys. A, 70, pp. 317-322
[57] M. Glerup, H. Kanzow, R. Almairac, M. Castignolles, P. Bernier, 2003, Chemical physics letters, 377, pp. 293-298
[58] M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Ruhle, H. W. Kroto, D. R. M. Walton, 2001, Chemical physics letters, 338, pp. 101-107
[59] R. Kamalakaran, M. Terrones, T. Seeger, Ph. Kohler-Redlich, M. Ruhle, Y. A. Kim, T. Hayashi, M. Endo, 2000, Applied physics letters, 77, pp. 3385-3387
[60] 陳力俊, 「材料電子顯微鏡學」,科儀叢書3,第75頁,民國九十
年。
[61] 李忠螢,「製程條件對奈米碳管成長及性質之影響研究」,國立東華大學材料科學與工程研究所碩士論文,第38-39頁,民國八十九年。
[62] C. J. Lee, J. Park, Y. Huh, J. Y. Lee, 2001, chemical physics letters 343, pp. 33-38
[63] 林志誠,「利用垂直式化學氣象沉積設備量產奈米碳管」,國立中正大學化學工程研究所碩士論文,第53-57頁,民國九十二年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔