(3.232.129.123) 您好!臺灣時間:2021/02/26 21:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴眉諭
研究生(外文):Lai May-Yun Lai
論文名稱:TiO2在增進鉑、鈀金屬觸媒抗硫性上所扮演的角色
論文名稱(外文):Role of TiO2 in improving sulfur resistance of supported Pt and Pd catalysts
指導教授:張仁瑞
指導教授(外文):Jen-Ray Chang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:130
中文關鍵詞:鉑觸媒鈀觸媒抗硫性
外文關鍵詞:Pt catalystPd catalystsulfur resistancemetal-support interactions
相關次數:
  • 被引用被引用:7
  • 點閱點閱:198
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討TiO2在增進鉑、鈀觸媒之抗硫性中所扮演之角色,藉由使用zeolite、TiO2-zeolite、SiO2與TiO2-SiO2為擔體,利用延伸X光吸收精細結構(EXAFS)、X光吸收近邊緣結構(XANES)及FT-IR等特性分析之方法,鑑定TiO2嫁接在擔體上時,在煅燒、加氫還原、CO吸附、H2S吸附、硫中毒反應、再生等階段下觸媒的行為變化,以得知金屬與擔體之作用力、金屬與吸附物種間之交互作用時造成電子轉移、金屬形態之改變、硫化鉑及硫化鈀之形成機制,以下為所得之結論:
(1). 加氫還原之後,因為TiO2-zeolite與TiO2-SiO2具有SMSI,使得 鉑、鈀金屬在TiO2-zeolite與TiO2-SiO2擔體上會形成較小的金屬顆粒。
(2). 鉑、鈀金屬顆粒之電子密度將由於金屬與TiO2交互作用而使得鉑、鈀金屬上的電子密度減小,造成在FT-IR譜圖中terminal的位置往高頻偏移。
(3). 硫中毒反應之後,1%Pt/TiO2-zeolite觸媒,只有硫化鉑之生成,鉑金屬並不會聚集成為大顆粒,而1%Pt/zeolite則有明顯金屬聚集之現象,此為1%Pt/zeolite活性衰減之主要原因。
(4). 硫中毒之Pd/ TiO2-SiO2觸媒得以450℃氫氣再生,而Pd/ SiO2則無法在此溫度完成再生。
The role of grafting TiO2 on silica and zeolite supports in improving the sulfur resistance of supported Pt and Pd catalyst was investigated. The decomposition of precursor during impregnation and calcination and the change of catalyst structure during hydrogenation reaction, sulfur poisoning, and H2S adsorption were monitored by EXAFS, XANES, FT-IR in order to explore the morphology and metal-support interactions change induced by the formation of metal sulfide. The following results were obtained in this study:
1.Metal-support interactions are increased by grafting TiO2 on silica and zeolite supports. The interactions retard aggregation of metal clusters during catalyst preparation, hence smaller metal particles have been observed.
2.Shift of terminal-CO to higher frequency for the TiO2 grafted samples suggests that electrons are withdrawn from metal clusters to support.
3.In contrast to zeolite-supported catalyst, no metal agglomeration concomitant with the formation of metal sulfide has been observed for the TiO2 grafted samples. The phenomena rationalize lower catalyst deactivation rate being observed for the Pt/ TiO2-zeolite samples.
4.Pd sulfide clusters on TiO2-silica can be regenerated by hydrogen treatment at 450 C. Pd sulfide clusters on silica, on the other hand, can not be reduced at the same conditions because of the mass transfer barrier caused by the bigger Pd clusters.
圖目錄........................................................I
表目錄.......................................................VI
第一章 緒論.................................................1
1.1 鉑、鈀觸媒之應用........................................1
1.1-1 沸石的應用 ............................................2
1.1-2 二氧化矽..............................................4
1.1-3 二氧化鈦-二氧化矽之應用...............................5
1.1-4 觸媒失活..............................................6
1.2 環保需求................................................9
1.3 研究動機...............................................11
1.4 研究目的...............................................17
第二章 觸媒製備、性能測試及特性分析........................18
2.1 前言...................................................18
2.2 觸媒製備...............................................18
2.2-1 二氧化鈦-二氧化矽及二氧化鈦-zeolite擔體之製備........19
2.2-2 鉑觸媒與鈀觸媒之製備.................................19
2.3 加氫飽和反應 ...........................................21
2.3-1 實驗藥品及氣體.......................................21
2.3-2 實驗裝置.............................................22
2.3-3 觸媒裝填.............................................26
2.3-4 觸媒性能測試實驗.....................................26
2.3-4a 觸媒對Tetralin加氫飽和之性能測試....................28
2.3-4b 不同擔體之鉑觸媒對硫中毒之性能測試..................28
2.3-5 產物分析.............................................29
2.4 觸媒特性分析及方法.....................................34
2.4-1 傅立葉轉換─紅外線光譜分析(FT-IR)....................34
2.4-1a 前言................................................34
2.4-1b 測量方式............................................34
2.4-2 GC (Gas Chromatography)..............................35
2.4-3 氣相層析併質譜測定法(GC-Mass)........................39
2.4-4 一氧化碳化學吸附分析 ( CO Chemisorption )............41
2.4-5 同步輻射特性分析.....................................42
2.4-5a 簡介................................................42
2.4-5b XANES...............................................44
2.4-5c EXAFS...............................................46
2.4-5d 分析步驟............................................49
2.4-5e 測量方式............................................51
第三章 結果與討論..........................................53
3.1 前言...................................................53
3.2 探討TiO2在鉑金屬觸媒上所扮演的角色.....................53
3.3 探討TiO2在鈀金屬觸媒上所扮演的角色.....................71
第四章 結論與未來展望......................................95
4.1 結論...................................................95
4.2 未來展望...............................................97
參考文獻 ...................................................123
 Books..............................................123
 Journals...........................................123
圖目錄
圖1-1 Y zeolite之結構圖.....................................3
圖1-2 柴油脫除芳香烴之單程製程.............................12
圖1-3 柴油脫除芳香烴之雙程製程.............................13
圖1-4 Ni/MO觸媒在柴油脫除芳香烴製程中溫度與壓力對芳香烴去除之關係.........................................................14
圖2-1 含浸觸媒示意圖.......................................23
圖2-2 實驗裝置圖...........................................25
圖2-3 反應器觸媒裝填圖.....................................27
圖2-4 1wt%之Pt/TiO2-zeolite觸媒加氫飽和反應之GC-MS圖譜.....32
圖2-5 X光吸收光譜。a.穿透模式b.螢光模式....................45
圖2-6 背向散射程序之示意圖.................................47
圖2-7 典型的 X 光吸收光譜術實驗配置圖......................52
圖3-1 1%Pt/zeolite及1%Pt/ TiO2-zeolite加氫還原後之EXAFS譜圖58
圖3-2 1%Pt/ TiO2-zeolite一氧化碳化學吸附圖.................59
圖3-3 1%Pt/ TiO2-zeolite一氧化碳化學吸附圖.................59
圖3-4 1%Pt/zeolite及1%Pt/ TiO2-zeolite加氫還原後於室溫下經CO 吸附之EXAFS譜圖..............................................60
圖3-5 1%Pt/zeolite及1%Pt/ TiO2-zeolite加氫還原後於室溫下經CO吸附之FT-IR譜圖..............................................61
圖3-6 1%Pt/ TiO2-zeolit加氫還原後(fresh)及經硫中毒反應後(used)之EXAFS譜圖............................................65
圖3-7 1%Pt/ zeolite加氫還原後(fresh)及經硫中毒反應後(used)之EXAFS譜圖 ....................................................66
圖3-8 1%Pt/zeolite及1%Pt/ TiO2-zeolite加氫還原原後(fresh)及經硫中毒反應後(used)之FT-IR譜圖................................67
圖3-9 1%Pt/zeolite及1%Pt/ TiO2-zeolite對硫中毒加速老化之結果...........................................................69
圖3-10 醋酸鈀之標準品、醋酸鈀以微濕含浸法製備的2%Pd/SiO2及2%Pd/TiO2-SiO2之EXAFS譜圖......................................74
圖3-11 data bank中所獲得之醋酸標準品FT-IR譜圖..............75
圖3-12 醋酸鈀以微濕含浸法製備之2%Pd/TiO2-SiO2之FT-IR譜圖...75
圖3-13 data bank中所獲得之醋酸鈀標準品FT-IR譜圖............76
圖3-14 醋酸鈀以微濕含浸法製備之2%Pd/ SiO2之FT-IR譜圖.......76
圖3-15 醋酸鈀之標準品、醋酸鈀以微濕含浸法製備的2%Pd/SiO2及2%Pd/TiO2-SiO2之XANES譜圖......................................77
圖3-16 2%Pd/SiO2及2%Pd/TiO2-SiO2煅燒後之EXAFS譜圖..........78
圖3-17 2%Pd/SiO2及2%Pd/TiO2-SiO2氫氣還原之EXAFS譜圖........82
圖3-18 2%Pd/TiO2-SiO2與2%Pd/SiO2氫氣還原後,在室溫下經CO吸附之FT-IR譜圖..................................................83
圖3-19 2%Pd/SiO2氫氣還原(fresh),與加氫還原後經CO吸附(CO)之 EXAFS譜圖 ....................................................84
圖3-20 2%Pd/TiO2-SiO2氫氣還原(fresh),與加氫還原後經CO吸附(CO)之EXAFS譜圖..............................................85
圖3-21 2%Pd/SiO2及2%Pd/TiO2-SiO2氫氣還原後經CO吸附之EXAFS譜圖 ....................................................86
圖3-22 2%Pd/SiO2以H2S吸附(sulfur poison),與經H2S吸附後以 450℃氫氣再生(450℃ reg.)之EXAFS譜圖-1.......................90
圖3-23 2%Pd/SiO2氫氣還原後(fresh)經H2S吸附(sulfur poisoning),及以450℃氫氣再生(450℃ reg.)之EXAFS譜圖-2.......91
圖3-24 2%Pd/TiO2-SiO2以 H2S吸附(sulfur poison),與經H2S吸附後以450℃氫氣再生(450℃ reg.)之EXAFS譜圖-1.....................92
圖3-25 2%Pd/TiO2-SiO2氫氣還原後(fresh)經H2S吸附(sulfur poisoning),及以450℃氫氣再生(450℃ reg.)之EXAFS譜圖-2.......93
圖4-1 2%Pd/zeolite分別經200℃、550℃煅燒之EXAFS譜圖......103
圖4-2 2%Pd/ TiO2-zeolite分別經200℃、550℃煅燒之EXAFS譜圖 ...................................................104
圖4-3 2%Pd/zeolite分別經200℃、550℃煅燒及120℃氫氣還原之EXAFS譜圖 ...................................................105
圖4-4 2%Pd/ TiO2-zeolite分別經200℃、550℃煅燒及120℃氫氣還原之EXAFS譜圖...............................................106
圖4-5 2%Pd/SiO2在日本Spring-8與在新竹同步幅射中心所得之EXAFS比較譜圖....................................................107
圖4-6 2%Pd/ zeolite經200℃煅燒及120℃加氫還原後,與加氫還原後經CO吸附之EXAFS譜圖-1.....................................108
圖4-7 2%Pd/ zeolite經200℃煅燒及120℃加氫還原後,與加氫還原後經CO吸附之EXAFS譜圖-2.....................................109
圖4-8 2%Pd/ zeolite經200℃煅燒及120℃加氫還原後,與加氫還原後經CO吸附之EXAFS譜圖-3.......................................110
圖4-9 2%Pd/ zeolite經550℃煅燒及120℃加氫還原後,與加氫還原後經CO吸附之EXAFS譜圖-1.....................................111
圖4-10 2%Pd/ zeolite經550℃煅燒及120℃加氫還原後,與加氫還原後經CO吸附之EXAFS譜圖-2.....................................112
圖4-11 2%Pd/ zeolite經550℃煅燒及120℃加氫還原後,與加氫還原後經CO吸附之EXAFS譜圖-3.....................................113
圖4-12 2%Pd/ TiO2-zeolite經200℃煅燒及120℃加氫還原後,與加氫還原後經CO吸附之EXAFS譜圖-1.................................114
圖4-13 2%Pd/ TiO2-zeolite經200℃煅燒及120℃加氫還原後,與加氫還原後經CO吸附之EXAFS譜圖-2.................................115
圖4-14 2%Pd/ TiO2-zeolite經200℃煅燒及120℃加氫還原後,與加氫還原後經CO吸附之EXAFS譜圖-3.................................116
圖4-15 2%Pd/ TiO2-zeolite經550℃煅燒及120℃加氫還原後,與加氫還原後經CO吸附之EXAFS譜圖-1.................................117
圖4-16 2%Pd/ TiO2-zeolite經550℃煅燒及120℃加氫還原後,與加氫還原後經CO吸附之EXAFS譜圖-2.................................118
圖4-17 2%Pd/ TiO2-zeolite經550℃煅燒及120℃加氫還原後,與加氫還原後經CO吸附之EXAFS譜圖-3.................................119
表目錄
表1-1 觸媒失活機制..........................................9
表1-2 中華民國九十六年一月一日起施行之汽油成分標準.........10
表1-3 中華民國九十六年一月一日起施行之柴油成分標準.........10
表2-1 二種擔體之物理性質....................................19
表2-2 本實驗使用之各種藥品與氣體............................24
表2-3 1wt%之Pt/TiO2-zeolite觸媒加氫飽和反應產物(反應6小時)之GC-MS分析結果................................................33
表2-4 典型氣相層析管柱之性質與特性..........................37
表2-5 GC儀器設定條件........................................40
表2-6 GC-MS儀器設定升溫設定條件.............................41
表3-1 Pt/TiO2-zeolite與Pt/zeolite加氫還原後(fresh) 觸媒之結構參數.........................................................54
表3-2 1%Pt/zeolite加氫還原後於室溫下經CO吸附之觸媒結構參數.56
表3-3 1%Pt/TiO2-zeolite加氫還原後於室溫下經CO吸附之觸媒之結構參數.........................................................57
表3-4 Pt/TiO2-zeolite與Pt/zeolite硫中毒反應後(used) 觸媒之結構參數.......................................................62
表3-5 1%Pd/ SiO2氫氣還原(fresh),接著經CO吸附(CO)之觸媒結構參數...........................................................80
表3-6 1%Pd/TiO2-SiO2氫氣還原(fresh),接著經CO吸附(CO)之觸媒結構參數.......................................................81
表3-7 1%Pd/SiO2 經H2S吸附(sulfur poison),再以450℃氫氣再生(450℃ reg.)之觸媒結構參數...................................87
表3-8 1%Pd/ TiO2-SiO2以 H2S吸附(sulfur poison),再以450℃氫氣再生(450℃ reg.)之觸媒結構參數...............................88
表4-1 CO吸附之前後所產生之變化............................120
Books:
1.王毓鳳;碩士論文; “擔體對鉑觸媒抗硫性之效應”;民國九十二 年。
2. Cooper, B. H.; Stanislaus, A.; Hannerup, P. N., “Hydrotreating Catalysts for Diesel Aromatics Saturation”, 1993
3. Gallezot, P.; Bergeret, G., “Catalyst Deactivation (E. E. Peterson and A. T. Bell, Eds.)”, 1987
4. Gates, B. C.; Katzer, J. R.; Schuit, G. C., “Chemistry of Catalytic Processes”, 1979.
5. Cotton and Wilkinson, “Advanced Inorganic Chemistry”
Journals:
1.Baker, R. T. K.; Prestridge, E. B.; Garten, R. L., “Electron Microscopy of Supported Metal Particles I.Behavior of Pt on Titanium Oxide, Aluminum Oxide, Silicon Oxide, and Carbon”, Journal of Catalysis, 1979, 56, 390.
2.Barbier, J.; Lamy, P.; Marecot, P.; Boitiaux, J. P.; Cosyns, J.; Verna, F., “Role of Sulfur in Catalytic Hydrogenation Reaction”, Adv. Catalysis, 1990, 37, 279.
3.Bartholomew, C. H., “Mechanisms of Catalyst Deactivation”, Applied Catalysis A: General, 2001, 212, 17.
4.Bazin, D. C.; Sayers, D. A.; Rehr , J. J. , “ Comparison Between X-ray Absorption Spectroscopy, Anomalous Wide Angle X-ray Scattering, Anomalous Small Angle X-ray Scattering, and Diffraction Anomalous Fine Structure Techniques Applied to Nanometer-Scale Metallic Cluster “, J. Phys. Chem. B, 1997, 101, 11040.
5.Battiston, G. C.; Dalloro, L.; Tauszik, G. R., “Performance and Aging of Catalysts for the Selective Hydrogenation of Acetylene: a Micropilot-Plant”, Study. Appl. Catal., 1982, 2, 1.
6.Castillo, R.; Koch, B.; Ruiz, P.; Delmon B., “Influence of the Amount of Titania on the Texture and Structure of Titania Supported on Silica”, Journal of Catalysis, 1996, 161, 524.
7.Chang,J. R.; Chang,S. L.; Lin,T. B.; “A Structural Investigation of Sulfur-Poisoning of - Alumina-Supported Pt Catalysts for Aromatics Reduction”, Journal of Catalysis, 1997, 169, 338.
8.Chiou, J. F.; Huang, Y. L.; Lin, T. B.; Chang, J. R. “Aromatics Reduction over Supported Platinum Catalysts. 1. Effect of Sulfur on the Catalyst Deactivation of Tetralin Hydrogenation”, Industrial & Engineering Chemistry Research, 1995, 34(12), 4277.
9.Chun, M. L.; Yu, M. L.; Wang I., “Naphthalene hydrogenation over Pt/TiO2–ZrO2 and the behavior of strong metal–support interaction (SMSI)”, Applied Catalysis A: General, 2000, 198, 223.
10.Cooper, B. H.; Stanislaus, A.; Hannerup, P. N., “Diesel Aromatics Saturation-A Comparative Study of Four Catalyst System”, ACS preprints, Div. of Fuel Chemistry, 1992, No.1, Vol.37.
11.Dams, M.; Drijkoningen, L.; Pauwels, B.; Van Tendeloo, G.; De Vos, D. E.; Jacobs., P. A.,” Pd–Zeolites as Heterogeneous Catalysts in Heck Chemistry”, Journal of Catalysis, 2002, 209, 225.
12.Emwajee Kullavanijaya; Noel W Cant1; David L Trimm1, “The treatment of binary VOC mixtures by adsorption and oxidation using activated carbon and a palladium catalyst”, Journal of chemical technology and Biotechnology, 2002, 77, 473.
13.Figoli, N. S.; L‘Argentiere, P. C., “Selective Hydrogenation Catalysts. Influence of the Support on the Sulphur-Resistance“, Catalysis Today, 1989, 5, 403.
14.Gallezot, P., “Catal. Rev. Sci. Eng.”, 1979, Vol.20.
15.“Topsoe seminar on Technologies for the Refining Industry”, Grand Hyatt Taipei Hotal, 1994, 22nd April.
16.Hippe, R. C.; Lamber, G. Schulz Ekloff and U. Schubert, ” Influence of the strong metal support interaction on the CO chemisorption at a Pt/SiO2 catalyst” , Catalysis Letters, 1997, 43, 195.
17.Hulea, V..; Moreau, P. “ the solvent Effect in the sulfoxidation of Tioethers by Hydrogen Peroxide Using Ti_containing Zeolite as Catalysts” J. Mol. Catal. A Chem. 1996, 111, 325.
18.Hulea, V..; Moreau, P. “Thioether Oxidation by Hydrogen Peroxide Using Ti_containing Zeolite as Catalysts” J. Mol. Catal. A Chem. 1996, 113, 499.
19.Jan, C.A.; Lin, T. B.; Chang, J. R. “Aromatics Reduction over Supported Platinum Catalysts. 3. Effects of Catalyst Rrecursors and Pretreatment Conditions on the Performance of Palladium-Promoted Platinum Catalysts”, Industrial & Engineering Chemistry Research, 1996, 35(11), 3893.
20.Jacobs, G.; Padro, C. L.; Resasco, D. E., “Comparative study of n-Hexane Aromatization on Pt/KL, Pt/Mg(Al)O, and Pt/SiO2 Catalysts:Clean and Sulfur-Containing Feeds”, Journal of Catalysis, 1998, 179, 43.
21.Jacobs, G.; Ghadiali, F.; Pisanu, A.; Padro, C. L.; Borgna, A.; Alvarez, W. E.; Resasco, D. E., “Increased Sulfur Tolerance of Pt/KL Catalysts Prepared by Vapor-Phase Impregnation and Containing a Tm Promoter”, Journal of Catalysis, 2000, 191, 116.
22.Kang, J. H.; Shin, E. W.; Kim, W. J.; Park, J. D.; Moon1, S. H., “Selective Hydrogenation of Acetylene on TiO2-Added Pd Catalysts”, Journal of Catalysis, 2002, 208, 310.
23.Koningsberger, D. C.; Oudenhuijzen, M. K.; Graaf J.de; van Bokhoven, J. A.; Ramaker, D. E., “In situ X-ray absorption Spectroscopy as a unique tool for obtaining information on hydrogen binding sites and electronic structure of supported Pt catalysts: towards an understanding of the compensation relation in alkane hydrogenolysis ”, Journal of Catalysis, 2003, 216, 178.
24.Kunkeler, P. J.; Zuurdeeg, B. J.; van der Wall, J. C.; Bokhoven, J. A.; Koningsberger, D. C.; van Bekkum, H., “Zeolite Beta:The Relationship between Calcination Procedure, Aluminum Configuration, and lewis Acidity”, Journal of Catalysis, 1998, 180, 234.
25.Lee, J. F., “Application of X-ray Absorption Sepectroscopy to Catalyst Characterization”, Chemistry, 1995, 53, 280.
26.Lin, T. B.; Jan, C. A.; Chang, J. R., “Aromatics Reduction over Supported Platinum Catalysts. 2. Improvement in Sulfur Resistance by Addition of Palladium to Supported Platinum Catalyst”, Industrial & Engineering Chemistry Research, 1995, 34(12), 4284.
27.Liu, L. Zhao, W. Q.; Sun, G. D.; Min, E. Z., “Saturation of Aromatics and Aromatization of C3 and C4 Hydrocarbons over Metal Loaded Pillared Clay Catalysts”, Catalysis Today, 1999, 51, 135.
28.Matsubayashi, N.; Yasuda, H.; Imamura, M.; Yoshimura, Y., “EXAFS study on Pd–Pt catalyst supported on USY zeolite”, Catalysis Today, 1998, 45, 375.
29.Mei, H.; Mei, B. W.; Yen, T. F., “A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization”, Fuel, 2003, 82, 405.
30.Miller, J. T.; Mojet, B. L.; Ramaker, D. E.; Koningsberger, D. C., “A new model for the metal-support interaction evidence for a shift in the energy of the valence orbitals”, Catalysis Today, 2000, 62, 101.
31.Min, B. K.; Santra1, A. K.; Goodman. D.W., “Understanding silica-supported metal catalysts: Pd/silica as a case study”, Catalysis Today, 2003, 85, 113.
32.Mojet, B. L.; Miller, J. T.; Ramaker, D. E.; Koningsberger, D. C., “A New Model Describing the Metal-Support Interaction in Noble Metal Catalysts”, Journal of Catalysis, 1999, 186, 373.
33.Miller, J. T.; Koningsberger, D. C., “The Origin of Sulfur Tolerance in Supported Platinum Catalysts: The Relationship between Structural and Catalytic Properties in Acidic and Alkaline Pt/LTL”, Journal of Catalysis, 1996, 162, 209.
34.Nasri, S. N.; Jones, J. M.; Dupont, V. A.; Williams, A., “A Comparative Study of Sulfur Poisoning and Regeneration of Precious-Metal Catalysts”, Energy & Fuels, 1998, 12, 1130.
35.Paal, Z.; Matusek, K.; Muhler, M., “Sulfur adsorbed on Pt catalyst: its chemical state and effect on catalytic properties as studied by electron spectroscopy and n-hexane test reactions”, Applied Catalysis A: General ,1997, 49, 113.
36.Pellet, R. J., “Hydrogen Transfer Catalysis by Platinum on Zeolites”, Journal of Catalysis, 1998, 177, 40.
37.Pinxt, H. H. C. M.; Kuster, B. F. M.; Koningsberger, D. C.; Marin, G. B., ”On-line characterization by EXAFS of tin promoted platinum graphite catalysts in the aqueous phase”, Catalysis Today, 1998, 39, 351.
38.Ramaker, D. E.; Mojet, B. L.; Garriga Oostenbrink, M. T.; Miller, J. T.; Koningsberger, D. C., ”Contribution of shape resonance and Pt-H EXAFS in the Pt L2,3 X-ray absorption edges of supported Pt particles : Application and consequences for catalyst characterization”, Phys. Chem. 1999, 1, 2293.
39.Reyes, P.; Pecehi, G.; Morales, M.; Fierro, J. L. G., “The nature of the support and the metal precursor on the resistance to sulphur poisoning of Pt supported catalysts”, Applied Catalysis A: General, 1997, 163, 145.
40.Rhee, H. K.; Lee, J. K., “Sulfur Tolerance of Zeolite Beta-Supported Pd-Pt Catalysts for the Isomerization of n-Hexane”. Journal of Catalysis, 1998, 117, 208.
41.Rodríguez, J.C.; Monzón, A.; Santamaría, J, “Hydrogenation of 1,3-butadiene on Pd/SiO2 in the presence of H2S. Deactivation and reactivation of the catalyst”, Applied Catalysis A: General ,1997, 65, 147.
42.Sault, A. G., “Reduction Behavior of Metals Supported on Hydrous Titanium Oxide Ion-Exchange Materials”, Journal of Catalysis, 1995, 156, 154.
43.Shiraishi, Y.; Hirai, T.; Komasawa, I., “Oxidative Desulfurization Process for Light Oil Using Titanium Silicate Molecular Sieve Catalysts”, Journal of chemical Engineering of Japan, 2002, 35, 1305.
44.Shiraishi, Y.; Tachibana, K.; Hirai, T.; Komasawa, I., “Photochemical Production of Biphenyls from Oxidized Sulfur Compounds Obtained by Oxidative Desulfurization of Light Oils”, Energy & Fuels, 2003, 17, 95.
45.Song, C.; Ma, X., ” New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization”, Applied Catalysis B: Environmental, 2003, 41, 207.
46.Song, C.; Schmitz, A. D., “Zeolite-Supported Pd and Pt Catalysts for Low-Temperature Hydrogenation of Naphthalene in the Absence and Presence of Benzothiophene”, Energy & Fuels, 1997, 11, 656.
47.Sogaard-Andersen, P.; Cooper, B. H.; Hannerup, P. N., “Topsoes Process for Improving Diesel Quality”, NPRA (National Petroleum Refiners Association), 1992, March, AM-92-50.
48.Ullman, T. L., “Investigation of the Fuel Composition on Heavy-Duty Diesel Engine Emission”, SAE (Society of Automotive Engineering, Inc.) Paper 892072, 1989.
49.Vaarkamp, M.; Modica, F. S.; Miller, J. T.; Koningsberger, D. C., “Influence of Hydrogen Pretreatment on the Structure of the Metal-Support Interface in Pt/Zeolite Catalysts”, Journal of Catalysis, 1993, 144, 373.
50.Van Bokhoven, J. A.; Koningsberger, D. C.; Kunkeker, P.; van Bekkum, H., “Influence of Steam Activation on Pore Structure and Acidity of Zeolite Beta: An A1 K Edge XANES Study of Aluminum Coordination”, Journal of Catalysis, 2002, 211 540.
51.vander Wall, R. L.; Ticich, T. M.; Curtis, V. E., “Substrate-Support Interactions in Metal-Catalyzed Carbon Nanofiber Growth”, Carbon, 2001, 39, 2277.
52.Xu, W. X.; Schierbaum, K. D .; Goepel W., “Ab Initio Study of the Effect of Oxygen Defect on the Strong-Metal-Support Interaction between Pt and TiO2(Rutile)(110) Surface” Journal of solid state chemistry, 1995, 119, 237.
53.Yasuhiro SHIRAISHI, Takayuki, HIRAI, Isao KOMASAWA “Oxidative desulfurization Process for Light Oil Using Titanium silicate Molecular Sieve Catalysts” J. of chemical Engineering of Japan, 2002, 35, 1305.
54.Yu, T. C.; Shaw, H., “The effect of sulfur poisoning on methane oxidation over palladium supported on γ-alumina catalysts” , Applied Catalysis B: Environmental, 1998, 18, 105
55.Zhan, X.; Guin, J. A., “High-pressure Hydrogenation of Naphthalene Using a Reduced Iron Catalyst”, Energy & Fuels, 1994, 8, 1384.
56.Zhang, Z.; Wang, C. C.; Zakaria, R.; Ying, J. Y., “Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts” J. Phys. Chem. B., 1998, 102, 10871.
57.Zhang, J.; Hu, Y.; Matsuoka, M.; Yamashita, H.; Minagawa, M.; Hidaka, H.; Anpo, M., “Relationship between the Local Structures of Titanium Oxide Photocatalysts and Their Reactivities in the Decomposition of No”, J. Phys. Chem. B., 2001, 105, 8395.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔