(3.237.20.246) 您好!臺灣時間:2021/04/15 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳駿
研究生(外文):Jiunn chen
論文名稱:電子關聯性效應於半金屬氧化物之電子結構的影響
論文名稱(外文):Influence of Electron Correlations on the Electronic Structure of Half-Metallic Oxides
指導教授:陳建德陳建德引用關係黃迪靖
指導教授(外文):Chien-Te ChenDi-Jing Huang
學位類別:博士
校院名稱:國立中正大學
系所名稱:物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2003
畢業學年度:92
語文別:英文
論文頁數:194
中文關鍵詞:電子強關聯系統半金屬氧化物電子自旋解析
外文關鍵詞:strongly correlated systemhalf-metallic oxidespin resolved electronic structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
凝態物質的物理性質決定於其價電子的電子結構。電子與電子間關聯性效應而產生之新奇現象,是當代凝態物理研究中非常熱門的主題之一。例如高溫超導、龐磁阻及導體絕緣相變……等奇特現象,已吸引許多科學家投入研究。先進的實驗設備如同步輻射光源、電子能譜儀及薄膜磊晶成長技術等,為加速研究前述奇特現象的強大工具。本論文研究係結合電子能譜技術及臨場磁性薄膜成長技術,探討電子與電子間關聯性效應對物質的新穎磁性性質之影響。我們提出別於傳統能帶理論的觀點,來解釋四氧化三鐵(Fe3O4)與二氧化鉻(CrO2)的奇異半金屬特性。
首先我們應用電子自旋解析光電子發射實驗,來探討Fe3O4的半金屬性及其電子結構。在費米能階附近的自旋極化測量顯示,能帶理論所預測之半金屬性需要重新考慮,而運用一個相對於能帶理論而言較為侷化的電子結構模型,則可以成功地詮釋自旋極化測量結果。我們亦應用共振式光電子發射實驗的磁圓二向性,研究Fe3O4電子結構的相關物理量。電子自旋解析能譜實驗結果顯示,Fe3O4是一個強關聯電子系統,傳統能帶理論不能完整地描述Fe3O4的磁性與電子結構。
在CrO2方面,我們發展一套全新的自旋解析軟X光吸收能譜實驗技術,來探討CrO2非佔有態的自旋解析電子結構。實驗結果顯示,在費米能階附近的電子自旋極化接近100%,直接證明CrO2具有半金屬的特性。我們亦發現CrO2 的3d電子呈現出Mott-Hubbard系統的特徵。因此CrO2不但具有電子強關聯系統的特性,另一方面也具有能帶特性,即是CrO2價電子展現了侷化與非侷化的雙重性質。
對於強關聯電子系統的電子結構與磁性性質而言,電子與電子間關聯性扮演決定性的角色。藉由尖端電子能譜實驗,我們深入地研究未來自旋電子學應用上具有潛力的磁性材料之電子結構。現有的理論並不能完整地描述我們的新發現。期許本論文能成為未來半金屬材料電子結構之理論發展契機。

Physical properties of condensed matter are mainly determined by valence electrons. Fascinating phenomena related to electron-electron correlations, such as high temperature superconductivity, colossal magnetoresistance, and metal-to-insulator transition, are important topics in modern condensed
physics. The advances in experimental techniques, such as synchrotron radiation, electron spectroscopies, and epitaxial growth of thin films, provide us with great opportunities to unravel the underling physics of these novel phenomena. In this thesis, we performed advanced electron spectroscopic measurements to study magnetic materials in which electron-electron correlations are important. Particularly, we present a viewpoint different from the conventional band theory to describe the half-metallic behavior of
Fe$_3$O$_4$ and CrO$_2$.
First we studied the half-metallic feature and the electronic structure of Fe$_3$O$_4$ using spin-polarized photoemission. The measured spin polarization in the vicinity of the Fermi level shows that Fe$_3$O$_4$ is not half-metallic as predicted by band theory. We can successfully interpret the experimental
results using a cluster model. With the measurements of magnetic circular dichroism in Fe $2p$ resonant photoemission and cluster model calculations, we obtained the parameters of the electronic structure of Fe$_3$O$_4$. These results indicate that Fe$_3$O$_4$ is a system with strong electron-electron
interactions. Furthermore, we developed a spin-resolved soft x-ray absorption technique to explore the unoccupied electronic structure of CrO$_2$. The spin-polarization in the vicinity of the Fermi level is close to 100\%, providing direct evidence of half-metallicity. The measurements also show the
existence of an atomic-like Cr $3d$ state not far away from the Fermi level with a spin polarization of only 50\%, establishing its Mott-Hubbard character. We conclude that CrO$_2$ has a dualistic electronic nature.
In a strongly correlated system, electron correlations play an important role in its magnetic properties. With advanced electron spectroscopic measurements, we studied the electronic structure of important magnetic materials for spintronics. However none of the present theory can fully describe our new
findings; the results presented in this thesis might shed some light on the physics of half-metallic oxides.

{1}Introduction
{1.1}Overview
{1.2}Strongly Correlated Electron System}
A. Interacting electrons in transition-metal oxide}
B. Hubbard model
C. Anderson impurity model
D. Zaanen-Sawatzky-Allen classification scheme
E. Ground state configuration}
{2}Electron Spectroscopies
{2.1}Photoemission
{2.1.1}Single-particle excitation}
A. Spectral function
B. Coherent and incoherent excitation
{2.1.2}Resonant photoemission (RESPES)
{2.1.3}Photoemission set-up
{2.1.4}Attenuation lengths of photoelectron
{2.1.5}Spin-resolved photoemission
A. Spin polarimetry
B. Performance test
{2.2}Soft X-ray Absorption (XAS)
{2.2.1}$L-$edge Absorption}
{2.2.2}X-ray magnetic circular dichroism}
{2.2.3}Oxygen $1s$ XAS
{2.2.4}Spin-resolved O $1s$ XAS
{3}Epitaxial Growth of Oxide Thin Films
{3.1}In-Situ Structure Characterizations
{3.1.1}LEED
{3.1.2}RHEED
A. RHEED oscillations
B. Damping in RHEED oscillation - step flow
{3.2}Experimental Setup
{3.3}Epitaxial Growth of Iron Oxide
{3.3.1}Thin film epitaxy
A. Preparation
B. X-ray diffraction
{3.3.2}Surface reconstruction
A. Surface termination
B. Aging effect
{3.3.3}Multi-layer growth
{3.4}Iron Oxide Grown on Pt(111)
{3.4.1}Growth}
{3.4.2}Moir\'{e} pattern
{3.4.3}Fe$_3$O$_4$(111)
{3.5}Electronic Structure of ML FeO/Pt(111)
{4}Electronic Structure of Magnetite}
{4.1}Fundamental Issues about Magnetite
{4.1.1}Verwey transition
{4.1.2}Half metals predicted by band theory
{4.2}Overview
{4.2.1}Band picture
{4.2.2}Localized picture
{4.3}Spin Polarized Measurements
{4.3.1}Spin polarized photoemission
A. Experiments
B. Results
C. Fractional parentage: the upper limit of SP
D.Reduction in measured SP
E. Conclusions
{4.4}Magnetic Circular Dichroism in Fe $2p$ Resonant Photoemission
{4.4.1}XAS of Fe $L-$edge absorption
{4.4.2}MCD in Fe $2p$ resonant photoemission
{4.4.3}Comparison with calculations
{4.4.4}Partial density of states of Fe 3$d$
{4.4.5}MCD in Fe $L-$edge absorption
{4.4.6}Conclusions
{5}Dualistic Electronic Nature of CrO$_2$
{5.1}Introduction
{5.1.1}Crystal structure
{5.1.2}Double exchange
{5.1.3}Self-doping
{5.2}Epitaxial CrO$_2$ Thin Film
{5.2.1}Surface treatment
A. Cr $2p$ PES results
B. Spin resolved photoemission
C. O $1s$ XAS results
{5.2.2}Polarization dependent O $K-$edge XAS
{5.2.3}Spin resolved O $K-$XAS
{5.3}Anomalous Spin Polarization in CrO$_2$
{5.3.1}Dualistic electronic nature in CrO$_2$
{5.3.2}Electron correlations and band effect in TMO
{5.3.3}Localized character of $3d$ states in CrO$_2$
{5.3.4}Role of the oxygen $2p$ band
{5.4}Conclusions
Appendix
{A}Methods of Calculation in Fe$_3$O$_4$
{B}Multiplet calculation program: Xtls
{B.1}Introduction}
{B.2}Installation}
{B.3}The format of the parameter description file (X-card)
{C}List of Publications

Chapter One
[1] J. G. Bednorz and K. A. Muller. Z. Phys. B 64, 189 (1986).
[2] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen. Science 264, 413 (1994).
[3] Yoshinori Tokura. Colocssal Magnetoresistive, volume 2 of Advancesin Condensed Matter Science. Gordon and Breach Science Publishers,2000.
[4] N. F. Mott. Metal-Insulator Transitions. Taylor and Francis, 2nd edition, 1990.
[5] R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow. Phys. Rev. Lett. 50, 2024 (1983).
[6] P. C. Hohenberg and W. Kohn. Phys. Rev. 136, B864 (1964).
[7] N. F. Mott. Proc. Phys. Soc A 62, 416 (1949).
[8] F. Bloch. Z. Phys. 57, 545 (1929).
[9] A. H. Wilson. Proc. Roy. Soc. A 133, 458 (1931).
[10] L .F. Matthesis. Phys. Rev. B 5, 290 (1972).
[11] L .F. Matthesis. Phys. Rev. B 5, 306 (1972).
[12] G. A. Sawatzky and J. W. Allen. Phys. Rev. Lett. 53, 2339 (1984).
[13] Ruqian Wu and A. J. Freeman. Phys. Rev. Lett. 73, 1994 (1994).
[14] S. K. Kwon and B. I. Min. Phys. Rev. B 62, 73 (2000).
[15] A. Fujimori, F. Minami, and S. Sugano. Phys. Rev. B 29, 5225 (1984).
[16] A. Fujimori and F. Minami. Phys. Rev. B 30, 957 (1984).
[17] G. van der Laan, C. Westra, C. Haas, and G. A. Swatzky. Phys. Rev. B 23, 4369 (1981).
[18] J. Zaanen, G. A. Sawatzky, and J. W. Allen. Phys. Rev. Lett. 55, 418 (1985).
[19] T. Tsujioka, T. Mizokawa, J. Okamoto, A. Fujimori, M. Nohara, H. Takagi, K. Yamaura, and M. Takano. Phys. Rev. B 56, R15509 (1997).
[20] C. B. Stagarescu, X. Su, D. E. Eastman, K. N. Altmann, F. J. Himpsel,and A. Gupta. Phys. Rev. B 61, R9233 (2000).
[21] K. Suzuki and P. Pedrow. Phys. Rev. Lett. 58, 11597 (1998).
[22] E. J. Singley, C. P. Weber, D. N. Basov, A. Barry, and J. M. D. Coey. Phys. Rev. B 60, 4126 (1999).
[23] S. Laad, L. Craco, and E. Muller-Hartmann. Phys. Rev. B 64, 214421 (2001).
[24] I. I. Mazin, D. J. Singh, and C. Ambrosch-Draxl. Phys. Rev. B 59, 411 (1999).
[25] J. Kunes, P. Novak, P. M. Oppeneer, C. Konig, M. Fraune, U. Rudiger, G. Guntherodt, and C. Ambrosch-Draxl. Phys. Rev. B 65, 165105 (2002).
[26] E. J. W. Verwey. Nature 144, 327 (1939).
[27] E. J. W. Verwey and P. W. Haayman. J. Chem. Phys. 8, 979 (1941).
[28] E. J. W. Verwey and E. L. Heilmann. J. Chem. Phys. 15, 174 (1947).
[29] E. J. W. Verwey, P. W. Haayman, , and F. C. Romeijn. J. Chem. Phys.15, 181 (1947).
[30] P. Novak, H. Stepankova, J. Englich, J. Kohout, and V. A. M. Brabers. Phys. Rev. B 61, 1256 (2000).
[31] J. Garcia, G. Subias, M. G. Proietti, H. Renevier, Y. Joly, J. L. Hodeau, J. Blasco, M. C. Sanches, and J. F. Berar. Phys. Rev. Lett. 85, 578 (2000).
[32] J. Garcia, G. Subias, M. G. Proietti, J. Blasco, H. Renevier, J. L. Hodeau, and Y. Joly. Phys. Rev. B 63, 054110 (2001).
[33] K. Siratori, Y. Ishii, Y. Morii, and S. Funahashi. J. Phys. Soc. Jpn. 67, 2818 (1998).
[34] Patrik Fazekas. Lecture Notes on Electron Correlation and Magnetism, volume 5 of Series in Modern Condensed Matter Physics, chapter 4.2, page 179. World Scientic, Singapore, 1999.
[35] Patrik Fazekas. Lecture Notes on Electron Correlation and Magnetism, volume 5 of Series in Modern Condensed Matter Physics, chapter 4.2, page 152. World Scientic, Singapore, 1999.
[36] N. Tsuda, K. Nasu, A. Fujimori, and K. Shiratori. Electronic Conduction in Oxides, page 119. Springer serier in solid-state sciences. Springer-Verlag, Berlin, 2nd edition, 2000.
Chapter Two
[1] C. J. Powell. Surf. Sci. 44, 29 (1974).
[2] N. Tsuda, K. Nasu, A. Yanase, and K. Siratori. Electronic Conduction in Oxides, volume 94 of Springer Series in Solid-State Sciences, chapter 4.4, page 129. Springer Verlag, Berlin, 1991.
[3] B. Delley. Dynamical eects, screening and correlation in mixed-valence compounds. In Proceedings of the International School of Physics, page 41, 1990.
[4] Jaehoon Park. Electronic Spectroscopy Study of 3d Transition Metal Oxides and Metal-Insulator Transitions. PhD thesis, The University of Michgan, Department of Physics, 1994.
[5] A. Fujimori, K. Morikawa, T. Mizokawa, T. Saitoh, M. Nakamura, Y. Tokura, I. Hase, and I. H. Inoue. Spectral Weight Transfer and Mass Renormalization in Correlated d-Electron System, volume 119 of Springer Series in Solid-State Sciences, chapter 4.4, page 174. Springer Verlag, Berlin, 1995.
[6] U. Fano. Phys. Rev. 124, 1866 (1961).
[7] E. M. Purcell. Phys. Rev. 54, 818 (1938).
[8] C. E. Kuyatt and J. A. Simpson. Rev. Sci. Instr. 38, 103 (1967).
[9] F. L. Battye, J. G. Jenkin, J. Liesegang, and R.C.G. Leckey. Phys. Rev. B 9, 2887 (1974).
[10] J. Szajman, J. Liesegang, R. C. G. Leckey, and J. G. Jenkin. Phys. Rev. B 18, 4010 (1974).
[11] Seah and Dench. Surf. Interface. Anal. 1, 2 (1974).
[12] H. Bethe. Ann. der Physik 5, 325 (1930).
[13] U. Fano. Phys. Rev. 95, 1198 (1954).
[14] T. J. Gay, F. B. Dunning Phys. Sci. Instrum. 63, 1635 (1992).
[15] D. J. Huang, J. Lee, J.-S Suen, G. A. Mulhollan, A. B. Andrews, J. L. Erskine Rev. Sci. Instrum. 64, 3474 (1993).
[16] D. J. Huang, W. P. Wu, J. Chen, C. F. Chang, S. C. Chung, M. Yuri, H.-J. Lin, P. D. Johnson, C. T. Chen Rev. Sci. Instrum. 73, 3778 (2002).
[17] J. C. Fuggle and S. F. Alvarado. Phys. Rev. A 22, 1615 (1980).
[18] A. Erbil, G. S. Cargill, R.Frahm, and R. F. Boehme. Phys. Rev. B 37, 2450 (1988).
[19] B. L. Henke, J. Liesegang, and S. D. Simth. Phys. Rev. B 19, 3004 (1979).
[20] M. Abbate, J. B. Goedkoop, F. M. F. de Groot, M. Grioni, J. C. Fuggle, S. Homan, H. Petersen, and M. Sacchi. Phys. Rev. B 19, 3004 (1979).
[21] A. Krol, C. J. Sher, and Y. H. Kao. Phys. Rev. B 42, 3829 (1990).
[22] B. Qi, I. Perez, P. H. Ansari, F. Lu, and M. Croft. Phys. Rev. B 36, 2972 (1985).
[23] G. van der Laan, B. T. Thole, G. A. Sawatzky, and M. Verdaguer. Phys. Rev. B 37, 6587 (1988).
[24] F. M. E. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky. Phys. Rev. B 41, 928 (1990).
[25] C. T. Chen, Y. U. Idzerda, H.-J. Lin, N. V. Simth, G. Meigs, E. Chaban, G. H. Ho, E. Pellegrin, F. Sette Phys. Rev. Lett 75, 152 (1995).
[26] B. T. Thole, P. Carra, F. Sette, and G. van der Laan. Phys. Rev. Lett 68, 1943 (1992).
[27] P. Carra, B. T. Thole, M. Altarelli, and X. Wang. Phys. Rev. Lett. 70, 694 (1993).
[28] F. M. F. de Groot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky, and H. Petersen. Phys. Rev. B 40, 5715 (1989).
[29] D. J. Huang, C. F. Chang, J. Chen, L.H. Tjeng, A. D. Rata, W. P. Wu, S. C. Chung, H. J. Lin, T. Hibma, and C. T. Chen. Surf. Rev. Lett. 9, 1007 (2002).
[30] P. G. Steeneken, L. H. Tjeng, I. Elmov, G. A. Sawatzky, G. Ghiringhelli, N. B. Brookes, and D. J. Huang. Phys. Rev. Lett. 88, 47201 (2002).
[31] D. J. Huang, C. F. Chang, J. Chen, L.H. Tjeng, A. D. Rata, W. P. Wu, S. C. Chung, H. J. Lin, T. Hibma, and C. T. Chen. Surf. Rev. Lett. 9, 1007 (2002).
[32] W. P. Wu. Spin Resolved Electronic Structure Studies on Half Metalic Magnetic Thin Film. Master thesis, Institute of Physics, National Chang Hua Univerdity of Education, Chang-Hua, Taiwan, 2002.
Chapter Three
[1] M. A. Herman and H. Sitter. Molecular Beam Epitaxy-Fundamentals and Current Status. Springer-Verlag, Berlin, 1989.
[2] A. Y. Cho. Thin Solid Films 100, 291 (1983).
[3] Milton Ohring. The Materials Science of Thin Films. Academic Press,INC., 1250 Sixth Avenue, San Diego, CA 92101, 1992.
[4] T. Fujii, M. Takano, R. Katano, Y. Bando, and Y. Isozumi. J. Cryst. Growth 99, 606 (1990).
[5] D. M. Lind, S. D. Berry, G. Chern, H. Mathias, and L. R. Testardi. Phys. Rev. B 45, 1838 (1992).
[6] F. C. Voogt, T. Hibma, G. L. Zhang, M. Hoefman, and L. Niesen. Surf. Sci. 331-333, 1508 (1995).
[7] R. M. Wolf, A. E. M de Veirman, P van der Sluis, P. J. van der Zaag, and J. B. F. aan de Stegge. Epitaxial Oxide Thin Films and Heterostructures, volume 341 of MRS Symposia Proceeding, chapter 4.4, page 23. Materials
Research Society, Pittsburgh, 1994.
[8] F. C. Voogt, T. Hibma, P. J. M. Smulders, L. Niesen, and Fujii. Epitaxial Oxide Thin Films III, volume 474 of MRS Symposia Proceeding, chapter 4.4, page 23. Materials Research Society, Pittsburgh, 1997.
[9] T. Fujii, D. Alders, F. C. Voogt, T. Hibma, B. T. Thole, and G. A. Gawatzky. Surf. Sci. 366, 579 (1996).
[10] John C. Vickerman. Surface Analysis - The Principal Techniques. John Wiley and Sons Ltd, England, 1997.
[11] D. P. Woodru and T. A. Delchar. Modern techniques of surface science, volume 69 of Cambridge Solid State Science Series, chapter 2, page 14. Camberidge University Press, Great Britain, 1986.
[12] Neil W. Ashcroft and N. David Mermin. Solid State Physics. Saunders College Publishing, Berlin, 1976.
[13] I. Hernandez-Calderon and H. Hochst. Phys. Rev. B 27, 4961 (1983).
[14] P. I. Cohen, G. S. Petrich, P. R. Pukite, G. J. Whaley, and A. S. Arrot. Surf. Sci. 216, 222 (1989).
[15] A. Muan and E. F. Osborn. Phase Equilibria among Oxides for Steel Making. Addison Wesley, 1965.
[16] H. Kronmuller, R. Schutzenauer, and F. Waltz. Phys. Status Solidi A 24, 487 (1974).
[17] J. M. Gaines, J. T. Kohlhepp, P. J. H. Bloemen, R. M. Wolf, A. Reinders, and R. M. Jungblut. J. Magn. Magn. Mater 165, 439 (1997).
[18] J. M. Gaines, P. J. H. Bloemen, J. T. Kohlhepp, C. W. T. Bulle-Lieuwma, R. M. Wolf, A. Reinders, R. M. Jungblut, P. A. A. van der Heijden, J. T. W. M. van Eemeren, J. aan de Stegge, and W. J. M. de Jonge. Surf. Sci. 373, 85 (1997).
[19] Y. Gao and S. A. Chambers. J. Crystal Growth 174, 446 (1997).
[20] Y. Gao, Y. J. Kim, S. A. Chambers, and G. Bai. J. Vac. Sci. Technol. A 15, 332 (1997).
[21] Y. J. Kim, Y. Gao, and S. A. Chambers. Surf. Sci. 371, 358 (1997).
[22] Y. J. Kim and C. Westphal and R. X. Ynzunza and H. C. Galloway and M. Salmeron and M. A. Van Hove and C. S. Fadley. Phys. Rev. B 55, R13448 (1997).
[23] P. W. Tasker. J. Phys C 12, 4977 (1979).
[24] P. W. Tasker. Philos. Mag. A 39, 119 (1979).
[25] W. Weiss, A. Barbieri, M. A. Van Hovn, and G. A. Somorjai. Phys. Rev. Lett. 71, 1848 (1993).
[26] A. Barbieri, W. Weiss, M. A. Van Hove, and G. A. Somorjai. Surf. Sci.302, 259 (1994).
[27] N. G. Condon, P. W. Murray, F. M. Leibsle, G. Thornton, A. R. Lennie, and D. J. Vaughan. Surf. Sci. 310, L609 (1994).
[28] A. R. Lennie, N. G. Condon, F. M. Lsibsle, P. W. Murray, G. Thgornton, and D. J. Vaughan. Phys. Rev. B 53, 10244 (1996).
[29] F. C. Voogt, T. Fujii, P. J. M. Smulders, L. Niesen, M. A. James, and T. Hibma. Phys. Rev. B 60, 11193 (1999).
[30] G. H. Vurens, D. R. Strongin, M. Salmeron, and G. A. Somorjai. Surf. Sci. 199, L387 (1988).
[31] G. H. Vurens, M. Salmeron, and G. A. Somorjai. Surf. Sci. 201, 129 (1988).
[32] H. C. Galloway, J. J. Benitez, and M. Salmeron. Surf. Sci. 298, 127 (1993).
[33] H. C. Galloway, P. Sautet, and M. Salmeron. Phys. Rev. B 54, R11145
(1996).
[34] W. Weiss and M. Ritter. Phys. Rev. B 59, 5201 (1999).
[35] H. C. Galloway, J.J. Benitez, and M. Salmeron. J. Vac. Sci. Technol. A 12, 2302 (1994).
[36] J. W. Cooper. Phys. Rev. 128, 681 (1962).
[37] J. J. Yeh and I. Lindau. At. Data Nucl. Data Tables 32, 2 (1985).
Chapter Four
[1] M. Imada, A. Fujimori, and Y. Tokura. Rev. Mod. Phys. 70, 1039 (1998).
[2] N. Tsuda, K. Nasu, A. Fujimori, and K. Shiratori. Electronic Conduction in Oxides. Springer serier in solid-state sciences. Springer-Verlag, Berlin, 2nd edition, 2000.
[3] Horng-Tay Jeng and G. Y. Guo. Phys. Rev. B 65, 094429 (2002).
[4] E. J. W. Verwey. Nature 144, 327 (1939).
[5] E. J. W. Verwey and P. W. Haayman. J. Chem. Phys. 8, 979 (1941).
[6] E. J. W. Verwey and E. L. Heilmann. J. Chem. Phys. 15, 174 (1947).
[7] E. J. W. Verwey, P. W. Haayman, , and F. C. Romeijn. J. Chem. Phys. 15, 181 (1947).
[8] Y. Fujii, G. Shirane, and Y. Yamada. Phys. Rev. B 11, 2036 (1975).
[9] M. Iizumi and G. Shirane. Solid State Commun. 17, 433 (1975).
[10] P. W. Anderson. Phys. Rev. 102, 1008 (1956).
[11] J. P. Wright, J. P. Atteld, and P. G. Radaelli. Phys. Rev. Lett. 87,
266401 (2001).
[12] M. Mizoguchi. J. Phys. Soc. Jpn 70, 2333 (2001).
[13] J. R. Cullen and E. R. Callen. Phys. Rev. B 7, 397 (1973).
[14] D. Ihle and B. Lorentz. J. Phys C 18, L645 (1985).
[15] V. I. Anisimov, I. S. Elmov, N. Hamada, and K. Terakura. Phys. Rev. B 54, 4387 (1996).
[16] H. Seo, M. Ogata, and H. Fukuyama. Phys. Rev. B 65, 085107 (2002).
[17] S. F. Alvarado, W. Eib, F. Meier, D. T. Pierce, K. Sattler, H. C. Siegmann, and J. P. Remeika. Phys. Rev. Lett. 34, 319 (1975).
[18] A. Chainani, T. Yokoya, T. Morimoto, T. Takahashi, and S. Todo. Phys. Rev. B 51, 17976 (1995).
[19] J.-H. Park, L. H. Tjeng, J. W. Allen, P. Metcalf, and C. T. Chen. Phys. Rev. B 55, 12813 (1997).
[20] D. J. Huang, C. F. Chang, J. Chen, L.H. Tjeng, A. D. Rata, W. P. Wu, S. C. Chung, H. J. Lin, T. Hibma, and C. T. Chen. Surf. Rev. Lett. 9, 1007 (2002).
[21] Y. S. Dedkov, U. Rudiger, and G. Guntherodt. Phys. Rev. B 65, 064417 (2002).
[22] S. M. Shapiro, M. Iizumi, and G. Shirane. Phys. Rev. B 14, 200 (1976).
[23] P. Novak, H. Stepankova, J. Englich, J. Kohout, and V. A. M. Brabers. Phys. Rev. B 61, 1256 (2000).
[24] J. Garcia, G. Subias, M. G. Proietti, H. Renevier, Y. Joly, J. L. Hodeau, J. Blasco, M. C. Sanches, and J. F. Berar. Phys. Rev. Lett. 85, 578 (2000).
[25] J. Garcia, G. Subias, M. G. Proietti, J. Blasco, H. Renevier, J. L. Hodeau, and Y. Joly. Phys. Rev. B 63, 054110 (2001).
[26] K. Siratori, Y. Ishii, Y. Morii, and S. Funahashi. J. Phys. Soc. Jpn. 67, 2818 (1998).
[27] P. A. Miles, W. B. Westphal, and A. von Hippel. Rev. Mod. Phys. 29, 279 (1957).
[28] R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow. Phys. Rev. Lett. 50, 2024 (1983).
[29] S. F. Alvarado, M. Erbudak, and P. Munz. Phys. Rev. Lett. 14, 2740 (1976).
[30] Robert J. Lad and Victor E. Henrich. Phys. Rev. B 39, 13478 (1989).
[31] A. Fujimore, M. Saeki, and Kimizuka. Phys. Rev. B 34, 7318 (1986).
[32] F. M. F. de Groot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky, and H. Petersen. Phys. Rev. B 40, 5715 (1989).
[33] C. S. Hwang and S. Yeh. Nucl. Instr. and Meth. A 420, 29 (1999).
[34] S.-C. Chung, J. Chen, L.-R. Huang, R. T. Wu, C.-C. Chen, N.-F. Cheng, J. M. Chuang, P.-C. Tseng, D.-J. Huang, C. F. Chang, S.-Y. Perng, C. T. Chen, and K.-L. Tsang. Nucl. Instr. and Meth. A 467, 445 (2001).
[35] P. W. Anderson. Phys. Rev. 115, 2 (1959).
[36] Satoru Sugano, Yukito Tanabe, and Hiroshi Kamimura. Multiplets of Transition-Metal Ions in Crystal. Academic Press, New York and London, 1970.
[37] B. T. Thole and G. van der Laan. Phys. Rev. B 44, 12424 (1995).
[38] J. C. Fuggle and J. E. Ingleseld. Unoccupied Electronic States. Springer Verlag, Berlin, 1992.
[39] L. H. Tjeng, C. H. Chen, J. Ghilsen, P. Rudolf, and F. Sette. Phys. Rev. Lett. 67, 501 (1991).
[40] A. Tanaka and T. Jo. J. Phys. Soc. Jpn 63, 2788 (1994).
[41] A. Tanaka and T. Jo. J. Phys. Soc. Jpn 61, 2669 (1992).
[42] G. van der Laan, C. M. B. Henderson, R. A. D. Pattrick, S. S. Dhesi, P. F. Schoeld, E. Dudzik, and D. J. Vaughan. Phys. Rev. B 59, 4314 (1994).
[43] A. Fujimori, A. E. Bocquet, T. Saitoh, and T. Mizokawa. J. Electron. Spectrosc. Relat. Phenom. 62, 141 (1993).
[44] P. Kuiper, B. G. Searle, L.-C. Duda, R. M. Wolf, and P. J. van der Zaag. J. Electron. Spectrosc. Relat. Phenom. 86, 107 (1997).
[45] Alessandro Mirone and Maurizio Sacchi. Phys. Rev. B 61, 13540 (2000).
Chapter Five
[1] R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow. Phys. Rev. Lett. 50, 2024 (1983).
[2] S. P. Lewis, P. B. Allen, and T. Sasaki. Phys. Rev. B 55, 10253 (1997).
[3] K.-H. Schwarz. J. Phys. F16, L211 (1986).
[4] Y. Ji, G. J. Strijkers, F. Y. Yang, C. L. Chien, J. M. Byers, A. Anguelouch, Gang Xiao, and A. Gupta. Phys. Rev. Lett. 86, 5585 (2001).
[5] R. J. Soulen, J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey. Science 282, 85 (1998).
[6] B. L. Chamberland. CRC Crit. Rev. Solid State Sci 7, 1 (1977).
[7] T. Tsujioka, T. Mizokawa, J. Okamoto, A. Fujimori, M. Nohara, H. Takagi, K. Yamaura, and M. Takano. Phys. Rev. B 56, R15509 (1997).
[8] C. B. Stagarescu, X. Su, D. E. Eastman, K. N. Altmann, F. J. Himpsel, and A. Gupta. Phys. Rev. B 61, R9233 (2000).
[9] K. Suzuki and P. Pedrow. Phys. Rev. Lett. 58, 11597 (1998).
[10] E. J. Singley, C. P. Weber, D. N. Basov, A. Barry, and J. M. D. Coey. Phys. Rev. B 60, 4126 (1999).
[11] S. Laad, L. Craco, and E. Muller-Hartmann. Phys. Rev. B 64, 214421 (2001).
[12] I. I. Mazin, D. J. Singh, and C. Ambrosch-Draxl. Phys. Rev. B 59, 411 (1999).
[13] J. Kunes, P. Novak, P. M. Oppeneer, C. Konig, M. Fraune, U. Rudiger, G. Guntherodt, and C. Ambrosch-Draxl. Phys. Rev. B 65, 165105 (2002).
[14] M.A. Korotin, V.I.Anisimov, D.I. Khomskii, and G.A. Sawatzky. Phys. Rev. Lett. 80, 4305 (1998).
[15] Peter Blaha, Karlheinz Schwarz, Georg Madsen, Dieter Kvasnicka, and Joachim Luitz. WIEN2k User's Guide. Vienna University of Technology, Getreidemarkt 9/156, A-1060 Vienna/Austria, 2001.
[16] C. Zener. Phys. Rev. 82, 403 (1951).
[17] J. Zaanen, G. A. Sawatzky, and J. W. Allen. Phys. Rev. Lett. 55, 418 (1985).
[18] K. Suzuki and P. M. Tedrow. Appl. Phys. Lett. 74, 428 (1999).
[19] N. J. C. Ingle, R. H. Hammond, and M. R. Beasley. J. Appl. Phys. 89, 4631 (2001).
[20] D. J. Huang, C. F. Chang, J. Chen, L.H. Tjeng, A. D. Rata, W. P. Wu, S. C. Chung, H. J. Lin, T. Hibma, and C. T. Chen. Surf. Rev. Lett. 9, 1007 (2002).
[21] P. G. Steeneken, L. H. Tjeng, I. Elmov, G. A. Sawatzky, G. Ghiringhelli, N. B. Brookes, and D. J. Huang. Phys. Rev. Lett. 88, 47201 (2002).
[22] W. P. Wu. Spin Resolved Electronic Structure Studies on Half Metalic Magnetic Thin Film. Master thesis, Institute of Physics, National Chang Hua Univerdity of Education, Chang-Hua, Taiwan, 2002.
[23] L. H. Tjeng, H. Fukuyama, S. Maekawa, and A. P. Malozemo. Strong Correlation and Superconductivity. Springer Verlag, Berlin, 1989.
[24] D. J. Huang, L. H. Tjeng, J. Chen, C. F. Chang, W. P. Wu, S. C. Chung, A. Tanaka, G. Y. Guo, H.-J. Lin, S. G. Shyu, C. C. Wu, and C. T. Chen. Phys. Rev. B 67, 214419 (2003).
[25] V. I. Anisimov. Spectroscopy of Mott Insulators and Correlated Metals. Springer Verlag, Berlin, 1995.
[26] J. van Elp and A. Tanaka Phys. Rev. B 60, 5331 (1998).
[27] A. Fujimore, I. Hase, H. Namatame, Y. Fujishima, and Y. Tokura. Phys. Rev. Lett. 69, 1796 (1992).
[28] S. Shin, S. Suga, M. Taniguchi, M. Fujisawa, H. Kanzaki, A. Fujimori, H. Daimon, Y. Ueda, K. Kosuge, and S. Kachi. Phys. Rev. B 41, 4993 (1999).
[29] A. Fujimore, F. Minami, T. Akahane, and N. Tsuda. J. Phys. Soc. Jpn 49, 1820 (1980).
[30] F. Sette et al. Phys. Rev. B 39, 11125 (1989).
[31] A. Fujimori, I. Hase, H. Namatame, Y. Fujishima, Y. Tokura, H. Eisaki, S. Uchida, K. Takegahara, and F. M. F. de Groot. Phys. Rev. Lett. 69, 1796 (1992).
[32] Jaehoon Park. Electronic Spectroscopy Study of 3d Transition Metal Oxides and Metal-Insulator Transitions. PhD thesis, The University of Michgan, Department of Physics, 1994.
[33] H. F. Pen, L. H. Tjeng, E. Pellegrin, F. M. F. de Groot, G. A. Sawatzky, M. A. van Veenendaal, and C. T. Chen. Phys. Rev. B 55, 15500 (1997).
[34] A. E. Bocquet, T. Mizokawa, K. Morikawa, A. Fujimori, S. R. Barman, K. B. Maiti, D. D. Sarma, Y. Tokura, and M. Onoda. Phys. Rev. B 53, 1161 (1996).
Appdenix
[1] A. Tanaka and T. Jo. J. Phys. Soc. Jpn, 63, 2788 (1994).
[2] Satoru Sugano, Yukito Tanabe, and Hiroshi Kamimura. Multiplets of Transition-Metal Ions in Crystal. Academic Press, New York and London, 1970.
[3] F. M. E. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky. Phys. Rev. B 41, 928 (1990).
[4] T. Uozumi, K. Okada, A. Kotain, R. Zimmermann, P. Steiner, S. Hufner, Y. Tezuka, and S. Shin. J. Elect. Spect. Relat. Phenom. 83, 9 (1997).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔