跳到主要內容

臺灣博碩士論文加值系統

(44.192.44.30) 您好!臺灣時間:2024/07/25 08:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林仁勇
研究生(外文):Jen-Yung Lin
論文名稱:光纖分碼多工系統之多長度展頻碼之研究
論文名稱(外文):Research on multilength codes for optical fiber CDMA systems
指導教授:溫志宏溫志宏引用關係
指導教授(外文):Jyh-Horng Wen
學位類別:博士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
中文關鍵詞:光分碼多工光正交碼多長度碼質數跳頻碼多速率傳輸碼建構方法
外文關鍵詞:Optical CDMAOOCMultilength codesPrime-hop codeMultirate transmissionCode construction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
此論文提出一種應用於光分碼多工系統(optical CDMA systems)中,建構多長度展頻碼(multilength codes)的方法。此方法可以解決未來多媒體資料傳送時可能需要不同傳送速率的要求。此論文提出的方法可以適用於目前已有的各種單極性光展頻碼(unipolar code)。
在論文中,我們先提出多長度展頻碼的建構方法,接下來探討新建構的多長度展頻碼的相關函數(correlation function)特性。從相關函數的探討中我們發現此一多長度展頻碼的建構方法確實能保有原來單一長度展頻碼的各種特性。其中包括:碼重(code weight)、自關函數的上限(autocorrelation constraint)及互關函數的上限(intra-crosscorrelation constraint)。除此之外,不同長度展頻碼間的互關函數的上限(inter-crosscorrelation constraint)也等於相同長度展頻碼的互關函數上限。
在證明新的多長度展頻碼建構方式確實具有良好特性後,為了評估此方法應用在現存光展頻碼的系統效能,我們將此一方法應用到光正交碼(OOC;optical orthogonal code)及質數跳頻碼(prime hop code)上並分析在僅有多重進接甘擾及在有多重進接加上雜訊甘擾環境下的系統效能。除了我們提出的多長度展頻碼建構方法以外,此論文也分析使用其他三種可能的多速率傳送方法在上述環境下的效能。
經過分析比較結果顯示,若以系統位元錯誤率(bit error rate)及在系統位元錯誤率低於10-9情況下系統可容納的使用者個數做為系統效能的評估標準,則將我們提出的多長度展頻碼建構方法應用在現存的質數跳頻碼上可以得到最好的系統效能。
This dissertation proposes and investigates a general-and-easy method to construct multilength codes with constant-weight for simultaneously supporting multimedia services with different symbol rates in optical CDMA systems. Our research begins with the code construction algorithm and demonstration of the correlation properties. We prove that the proposed construction can expand an existing unipolar codeword to generate many different length codewords. The length of a multilength codeword can be any integer multiplier of that of the unipolar codeword. Meanwhile, the auto- and cross-correlation properties can be preserved.
To evaluate the performance of the proposed construction, we adapt this multilength construction to OOCs (one-dimensional unipolar codes) and prime-hop codes (two-dimensional unipolar codes). We analyze the performance of these multilength codes in the MAI-only and MAI-plus-noise environments. In addition to the proposed construction, we also study the performance of other methods proposed for multirate transmissions: the repeat code method, which implements the multirate function by transmitting each symbol many times, the repeat code with ARQ, which uses the repeat symbols to make a decision for issuing a positive or negative acknowledgement and the parallel approach, where several address codes are given to a terminal according to the user symbol rate.
Based on our performance analysis, we conclude that the performance (in terms of bit error probability and the maximum users accommodated in the system) of the proposed construction with prime-hop codes is superior to other approaches. In addition to easy hardware implementation, which can be achieved by modifying the existing hardware, the proposed construction with prime-hop codes finds possible application in multimedia transmission.
中文摘要………………………………………………. I
Abstract ……………………………………………. II
Abbreviations ……………………………………... V
Captions for Figures and Tables…………….. VI
Chapter 1 Introduction ………………………….. 1
1.1 Prolog …………………………………………. 1
1.2 Description of the Optical CDMA Systems 5
1.3 Organization of the Dissertation ……….. 7
Chapter 2 Multilength Coding Algorithm for Incoherent Optical CDMA Systems ......................... 11
2.1 Introduction …………………………… 11
2.2 Coding Algorithm …………………………… 14
2.3 Correlation Properties ………………………. 16
2.4 Examples ………………………………………… 18
2.5 Remarks …………………………………………. 21
Chapter 3 Multilength Coding with Optical Orthogonal Codes in an MAI-only environment …………………………… 25
3.1 Introduction …………………………………… 25
3.2 Characteristics of Optical Orthogonal Codes …………………………………………………………… 26
3.3 Performance Analysis ………………………… 27
3.3.1 The System Model …………………………… 30
3.3.2 Performance Analysis of the Multilength Code System …………………………………………………………. 31
3.3.3 Performance Analysis of the Repest Code System ……………………………………………………… 33
3.4 Numerical Results …………………………… 36
3.5 Remarks ………………………………………… 38
Chapter 4 Multilength Coding with Prime Hop Codes in an MAI-only environment……………………………………. 48
4.1 Introduction …………………………………. 48
4.2 Characteristic of Prime Hop Codes ………. 51
4.3 Performance Analysis ………………………… 54
4.3.1 Performance Analysis of Multilength Prime-Codes…………………………………………………… 55
4.3.2 Performance Analysis of Multilength Modified Prime-Codes…………………………………………………… 57
4.4 Numerical Results …………………………… 58
4.5 Remarks …………………………………………. 60
Chapter 5 Effect of Thermal Noise and APD Noise on the Performance of Multilength Codes………………… 69
5.1 Introduction …………………………………… 69
5.2 The System Model ……………………………… 70
5.3 Performance Analysis ………………………… 72
5.3.1 The Multilength Code Systems …………… 72
5.3.2 The Double-Length Code Systems ………… 76
5.4 Numerical Results …………………………… 79
5.5 Remarks ………………………………………… 83
Chapter 6 Conclusions ……………………………. 94
References …………………………………………… 96
Appendix A…………………………………………… 105
Appexdix B…………………………………………… 107
[1] R. Dixon, Spread Spectrum Systems, John Wiley & Sons, Inc., 1984.
[2] C. F. Lam, “To spread or not to spread: the myths of optical cdma,” Optical Fiber Communication Conference, Vol. 2, pp. TuV6 -1 — TuV6-3, 2001.
[3] N. Karafolas and D. Uttamchandani, “Optical fiber code division multiple access networks: a review,” Optical Fiber Technology, Vol. 2, pp. 149-168, Feb. 1996.
[4] A. Samukic, “UMTS universal mobile telecommunications systems: development of standards for the third generation,” IEEE Transaction on Vehicular Technology, Vol. 47, No. 4, pp. 1099-1104, Nov. 1998.
[5] E. Dahlman, P. Beming, J. Knutsson, F. Ovesjo, M. Persson, and C. Roobol, “WCDMA — the radio interface for future mobile multimedia communications,” IEEE Transaction on Vehicular Technology, Vol. 47, No. 4, pp. 1104-1118, Nov. 1998.
[6] F. R. K. Chung, J. A. Salehi and V. K. Wei, “Optical orthogonal codes: design, analysis, and applications,” IEEE Transactions on Information Theory, Vol. 35, pp. 595-604, May 1989.
[7] J. A. Salehi, “Code division multiple-access techniques in optical fiber networks ---Part I: fundamental principles,” IEEE Transactions on Communications, Vol. 37, pp. 824-833, Aug.1989.
[8] J. A. Salehi, “Code division multiple-access techniques in optical fiber networks ---Part II: performance analysis,” IEEE Transactions on Communications, Vol. 37, pp. 834-842, Aug.1989.
[9] G. Vannucci, “Combining frequency division multiplexing and code division multiplexing for high capacity optical network,” IEEE Network, Vol. 3, pp. 21-30, Mar. 1989.
[10] M.-Y. Liu and H.-W Tsao, “Real-time multimedia broadcasting via direct-detection fiber-optic synchronous CDMA networks,” IEEE Transactions on Broadcasting, Vol. 44, No. 3, pp. 371-380, Sep. 1998.
[11] R. Fantacci, A. Tani, and G. Vannuccini, “Performance evaluation of an interference cancellation receiver for noncoherent optical CDMA systems,” in Proceedings of GLOBECOM’02, Vol. 3, pp. 2823-2827.
[12] R. Papannareddy and A. M. Weiner, “Performance comparison of coherent ultrashort light pulse and incoherent broad-band CDMA system,” IEEE Photonics Technology Letters, Vol. 11, No. 12, pp. 1683-1685, Dec. 1999.
[13] H. M. H. Shalaby, “Chip-level detection in optical code division multiple access,” Journal of Lightwave Technology, Vol. 16, No. 6, pp. 1077-1087, Jun. 1998.
[14] F. Khaleghi and M. Kavehrad, “New correlator receiver architecture for optical CDMA networks with an increased system capacity,” in Proceedings of GLOBECOM’95, Singapore, Nov. 13-17 1995, Vol. 3, pp. 2151-2155.
[15] L. Tancevski and I. Andonovic, “Block multiplexing codes for incoherent asynchronous all-optical CDMA using ladder network correlators,” IEE Proc.-Optoelectron, Vol. 142, No. 3, pp. 125-131, June 1995.
[16] G. C. Yang, and W. C. Kwong, “Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks,” IEEE Transactions on Communications, Vol. 45, No.11, pp. 1426-1434, Nov. 1997.
[17] Y.-G. Wen, L.-K. Chen, K.-P. Ho, F. Tong and W.-S. Chan, “Performance verification of a variable bit-rate limiter for on-off keying (OOK) optical systems,” Journal of Lightwave Technology, Vol. 18, No. 6, pp. 779-785, Jun. 2000.
[18] S. Shen, A.M. Weiner, G. D. Sucha and M. L. Stock, “Bit error rate performance of ultrashort-pulse optical CDMA detection under multi-access interference,” Electronic Letters, Vol. 36, No. 21, pp. 1795-1796, Oct. 2000.
[19] A. Gameiro, “Synchronous and quasisynchronous optical CDMA with balanced complementary receivers,” IEE Proc.-Optoelectron, Vol. 147, No. 5, pp. 370-376, Oct. 2000.
[20] C.-S. Weng and J. Wu, “Perfect difference codes for synchronous fiber-optic CDMA communication systems,” Journal of Lightwave Technology, Vol. 19, No. 2, pp. 186-194, Feb. 2001.
[21] P. Azmi, M. Nasiri-Kenari and J. A. Salehi, “Low-rate super-orthogonal channel coding for fiber-optic CDMA communication systems,” Journal of Lightwave Technology, Vol. 19, No. 6, pp. 847-855, Jun. 2001.
[22] M. Azizoglu, J. A. Salehi and Y. Li, “Optical CDMA via temporal codes,” IEEE Transactions on Communications, Vol. 40, No. 7, pp. 1162-1170, Jul. 1992.
[23] A.D. Gelman and D.L. Schilling, “A fiber optic CDMA network for real-time communication,” in Proceedings of INFOCOM’88, New Orleans, L.A., Mar. 27-31 1988, pp. 0062-0069.
[24] H. Chung and P. V. Kumar, “Optical orthogonal codes-new bounds and an optimal construction,” IEEE Transactions on Information Theory, Vol. 36, No. 4, pp. 866-873, Jul. 1990.
[25] S. V. Maric, “New family of algebraically designed optical orthogonal codes for use in CDMA fibre-optic networks,” Electronics Letters, Vol. 29, No. 6, pp. 538-539, Mar. 1993.
[26] S. V. Maric, Z. I. Kostic and E. L. Titlebaum, “A new family of optical code sequences for use in spread-spectrum fiber-optic local area networks,” IEEE Transactions on Communications, Vol. 41, No. 8, pp. 1217-1221, Aug. 1993.
[27] S. V. Maric, M. D. Halm and E. L. Titlebaum, “Construction and performance analysis of a new family of optical orthogonal codes with ideal auto- and cross-correlation functions for use in CDMA fiber-optic LANs,” in Proceedings of ICC’94, New Orleans, L.A., U.S.A, May. 1994, pp. 136-140.
[28] G.-C. Yang and T. E. Fuja, “Optical orthogonal codes with unequal auto- and cross-correlation constraints,” IEEE Transactions on Information Theory, Vol. 41, No. 1, pp. 96-106, Jan. 1995.
[29] G.-C. Yang, “Some new families of optical orthogonal codes for code-division multiple-access fibre-optic networks,” IEE Proc.-Communications, Vol. 142, No. 6, pp. 363-368, Dec. 1995.
[30] C. Argon and R. Ergul, “Optical CDMA via shortened optical orthogonal codes based on extended sets,” Optics Communications, Vol. 116, pp. 326-330, May 1995.
[31] J.-G. Zhang, “Address codes for use in all-optical CDMA systems,” Electronics Letters, Vol. 32, No. 13, pp. 1154-1156, June 1996.
[32] S. W. Lee and D. H. Green, “Performance analysis of optical orthogonal codes in CDMA LANs,” IEE Proc.-Communications, Vol. 145, No. 4, pp. 265-271, Aug. 1998.
[33] T. Ohtsuki, “Performance analysis of direct-detection optical CDMA systems with optical hard-limiter using equal-weight orthogonal signaling,” in Proceedings of GLOBECOM’99, Rio de Janeireo, Brazil, Dec. 05-09 1999, Vol. 1.B, pp. 696-700.
[34] J.-G. Zhang, “Design of a special family of optical CDMA address codes for fully asynchronous data communications,” IEEE Transactions on Communications, Vol. 47, No. 7, pp. 967-973, Jul. 1999.
[35] R. Fuji-Hara and Y. Miao, “Optical orthogonal codes: their bounds and new optimal constructions,” IEEE Transactions on Information Theory, Vol. 46, No. 7, pp. 2396-2406, Nov. 2000.
[36] Y.-H. Lee, M.-H. Chen and J.H. Huang, “Maximal Simultaneous users code set selection in FO-CDMA using genetic algorithm,” in Proceedings of ICCEA’99, Beijing, China, Nov. 01-04 1999, pp. 129-132.
[37] H. M. H. Shalaby, “The capacities of optical CDMA communication channels with different code-correlation constraints,” in Proceedings of 2000 IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications, Parsippany, NJ , U.S.A., Sep. 6-8 2000, Vol. 1, pp. 179-183.
[38] C. Neamprem and B. Piyatamrong, “ATM performance improvement using OOC and 2n prime code,” in Proceedings of TENCON 2000, Kuala Lumpur, Malaysia, Sep.24-27 2000, Vol. 3, pp. 262-265.
[39] S.V. Maric, Z. I. Kostic and E. L. Titlebaum, “A new family of optical code sequences for use in spread-spectrum fiber-optic local area networks,” IEEE Transactions on Communications, Vol. 41, No. 8, pp. 1217-1221, Aug. 1993.
[40] G.-C. Yang and W.C. Kwong, “Performance analysis of optical CDMA with prime codes,” Electronics Letters, Vol. 31, No. 7, pp. 569-570, Mar. 1995.
[41] J.-G. Zhang, W. C. Kwong and A. B. Sharma, “2n modified prime codes for use in fiber optic CDMA networks,” Electronics Letters, Vol. 33, No. 22, pp. 1840-1841, Oct. 1997.
[42] J.-G. Zhang, W. C. Kwong and A. B. Sharma, “Effective design of optical fiber code-division multiple access networks using the modified prime codes and optical processing,” in Proceedings of WCC-ICCT 2000, Beijing, China, Aug. 21-25, 2000, Vol. 1, pp. 392-396.
[43] G.-C. Yang and W. C. Kwong, Prime Codes with Applications to CDMA Optical and Wireless Networks, Artech House, Inc. 2002.
[44] E. Park, A. J. Mendez, and E. M. Gasmeiere, “Temporal/spatial optical CDMA networks,” IEEE Photon. Technology Letters, Vol. 4, pp. 1160-1162, Oct. 1992.
[45] K. Kiasaleh, “Performance of packet-switched fiber-optic frequency-hopping multiple-access networks,” IEEE Transactions on Communications, Vol. 43, No. 7, pp. 2241-2253, July 1995.
[46] L. Tancevski, I. Andonovic, M. Tur and J. Budin, “Hybrid wavelength hopping/time spreading code division multiple access systems,” IEE Proc.-Optoelectron, Vol. 143, No. 3, pp. 161-166, June 1996.
[47] L. Tancevski and I. Andonovic, “Massive optical LAN’s using wavelength hopping/time spreading with increased security,” IEEE Photonics Technology Letters, Vol. 8, No. 7, pp. 935-937, July 1996.
[48] L. Tancevski and I. Andonovic, “Hybrid wavelength hopping/time spreading scheme for use in massive optical networks with increased security,” Journal of Lightwave Technology, Vol. 14, No. 12, pp. 2636-2647, Dec. 1996.
[49] P. Tao and L. Y. Quan, “A novel FH/TS en(de)coder for optical CDMA,” in Proceedings of ICCT’98, Beijing, China, Oct. 22-24 1998, Vol. 2, pp. S35-07-01 - S35-07-04.
[50] X. Wang, K.T. Chan, Y. Liu, L. Zhang and I. Bennion, “Novel temporal/spectral coding technique based on fiber bragg gratings for fiber optic CDMA application,” in Technical Digest of OFC/IOOC ''99, San Diego, CA , USA, Feb. 21-26, 1999, Vol. 2, pp. 341-343.
[51] E. S. Shivaleela, K. N. Sivarajan and A. Selvarajan, “Design of a new family of two-dimensional codes for fiber-optic CDMA networks,” Journal of Lightwave Technology, Vol. 16, No. 4, pp. 501-508, Apr. 1998.
[52] H. Fathallah, L. A. Rusch and S. Larochelle, “Passive optical fast frequency-hop CDMA communications system,” Journal of Lightwave Technology, Vol. 17, No. 3, pp. 397-405, Mar. 1999.
[53] H. Fathallah and L. A. Rusch, “Robust optical FFH-CDMA communications: coding in place of frequency and temperature controls,” Journal of Lightwave Technology, Vol. 17, No. 8, pp. 1284-1293, Aug. 1999.
[54] O. Moreno and S. V. Maric, “A new family of frequency-hop codes,” IEEE Transactions on Communications, Vol. 48, No. 8, pp. 1241-1244, Aug. 2000.
[55] K. Yu, J. Shin and N. Park, “Wavelength-time spreading optical CDMA system using wavelength multiplexers and mirrored fiber delay lines,” IEEE Photonics Technology Letters, Vol. 12, No. 9, pp. 1278-1280, Sep. 2000.
[56] T.-W. F. Chang and E. H. Sargent, “Optical CDMA using 2-D codes: the optimal single-user detector,” IEEE Communications Letters, Vol. 5, No. 4, pp. 169-171, Apr. 2001.
[57] W. C. Kwong and G.-C. Yang, “Wavelength-time codes for multimedia optical CDMA systems with fiber-bragg-grating arrays,” in Proceedings of GLOBECOM’02, Vol. 3, pp. 2813-2817.
[58] S. J. Lee, H. W. Lee and D. K. Sung, “Capacities of single-code and multicode DS-CDMA systems accommodating multi-access services,” IEEE Transactions on Vehicular technology, Vol. 48, No. 2, pp. 376-384, Mar. 1999.
[59] F. Adachi, M. Sawahashi and K. Okawa, “Tree-structured generation of orthogonal spreading codes with different lengths for forward link of DS-CDMA mobile radio,” Electronics Letters, Vol. 33, No. 1, pp. 27-28, Jan. 1997.
[60] R. Petrovic and S. Holmes, “Orthogonal codes for CDMA optical fiber LANs with variable bit interval,” Electronics Letters, Vol. 26, No. 10, pp. 662-664, May 1990.
[61] O. Moreno and S.V. Maric, “Codes for optical transmission at different rates,” in Proceedings of 1995 IEEE International Symposium on Information Theory, Whistler, BC, Canada, Sep. 17-22, 1995, page 87.
[62] S. V. Maric, O. Moreno and C. J. Corrada, “Multimedia Transmission in fiber-optic LAN’s using optical CDMA,” Journal of Lightwave Technology, Vol. 14, No. 10, pp. 2149-2153, Oct. 1996.
[63] J.-G. Zhang, “Variable-bit-rate video transmission systems using optical fiber code-division multiplexing scheme,” IEEE Transactions on Consumer Electronics, Vol. 42, No. 4, pp. 874-884, Nov. 1996.
[64] T. Ohtsuki, “Multicode direct-detection optical CDMA systems,” in Proceedings of 1997 IEEE International Symposium on Information Theory, Ulm, Germany, June 29-July 4 1997, page 479.
[65] S. V. Maric and V. K. N. Lau, “Multirate fiber-optic CDMA: system design and performance analysis,” Journal of Lightwave Technology, Vol. 16, No. 1, pp. 9-17, Jan. 1998.
[66] J.-G. Zhang, “Flexible optical fiber CDMA networks using strict optical orthogonal codes for multimedia broadcasting and distribution applications,” IEEE Transactions on Broadcasting, Vol. 45, No. 1, pp. 106-115, Mar. 1999.
[67] W. C. Kwong and G.-C. Yang, “Design of multilength optical orthogonal codes for optical CDMA multimedia networks,” IEEE Transactions on Communications, Vol. 50, No. 8, pp. 1258-1265, Aug. 2002.
[68] E. Inaty, H.M.H. Shalaby, L. A. Rusch and P. Fortier, “Multirate optical fast frequency hopping CDMA system using power control,” Journal of Lightwave Technology, Vol. 20, No. 2, pp. 166-177, Feb. 2002.
[69] E. Inaty, H.M.H. Shalaby and P. Fortier, “A new transmitter-receiver architecture for noncoherent multirate OFFH-CDMA system with fixed optimal detection threshold,” Journal of Lightwave Technology, Vol. 20, No. 11, pp. 1885-1894, Nov. 2002.
[70] P. Prucnal, M. Santoro, and T. Fan, “Spread spectrum fiber optic local area network using optical processing,” Journal of Lightwave Technology, Vol. 4, No. 5, pp. 547-554, May 1986.
[71] J.-G. Zhang and G. Picchi, “Tunable prime-code encoder/decoder for all-optical CDMA applications,” Electronics Letters, Vol. 29, No.13, pp. 1211-1212, Jun. 1993.
[72] J.-H. Wen, J.-Y. Lin, and C.-Y. Liu, “Modified prime-hop codes for optical CDMA systems,” IEE Proc.-Communications, vol. 150, pp. 404-408, Oct. 2003.
[73] Govind P. Agrawal, Fiber-Optic Communication Systems, Chapter 4, John Wiley & Sons, Inc., 1997.
[74] James B. Abshire, “Performance of OOK and low-order PPM modulations in optical communications when using APD-based receivers,” IEEE Transactions on Communications, Vol. COM-32, No. 10, pp. 1140-1143, Oct. 1984.
[75] R.M. Gagliardi and G.. Prati, “On Gaussian error probabilities in optical receivers,” IEEE Transactions on Communications, Vol. COM-28, No. 9, pp. 1742-11747, Sep. 1984.
[76] Hossam M. H. Shalaby, “Effect of thermal noise and APD noise on the performance of OPPM-CDMA receivers,” Journal of Lightwave Technology, Vol. 18, No. 7, pp. 905-914, July 2000.
[77] Chi-Shun Weng and Jingshown Wu, “Perfect difference codes for synchronous fiber-optic CDMA communication system,” Journal of Lightwave Technology, Vol. 19, No. 2, pp. 186-194, Feb. 2001.
[78] Hyuck M. Kwon, “Optical orthogonal code-division multiple-access system-part I: APD noise and thermal noise,” IEEE Transactions on Communications, Vol. 42, No. 7, pp. 2470-2479, July 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top