(3.237.20.246) 您好!臺灣時間:2021/04/17 17:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉家銘
研究生(外文):Chia-Ming Yeh
論文名稱:主動式電力濾波器以最佳化為基礎之參考補償電流演算策略
論文名稱(外文):Optimization-Based Reference Compensation Current Strategies for Shunt Active Power Filter Control
指導教授:張文恭
指導教授(外文):Gary W. Chang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:120
中文關鍵詞:主動式電力濾波器參考軸轉換瞬時虛功理論IEEE-519IEC-61000
外文關鍵詞:Active power filterreference frame transformationIEC-61000IEEE-519instantaneous reactive power theory
相關次數:
  • 被引用被引用:3
  • 點閱點閱:322
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
本文主要針對三相三線或三相四線配電系統中三相電壓發生不平衡或諧波失真,且供應非線性平衡或不平衡負載的狀況下,提出一新的理論與設計概念之參考補償電流演算策略,以作為並聯式主動濾波器改善功因或抑制諧波電流之控制器核心功能。傳統的參考補償電流演算策略皆根據以參考軸轉換為基礎之演算策略,計算出濾波器需注入之補償電流量,完全消除諧波與補償虛功以維持平衡與正弦的電源電流。若補償後之電源電流只需滿足IEC-61000或是IEEE-519諧波規範標準內時,所設計之主動式電力濾波器額定容量,與傳統完全補償之演算策略較不同的是可以彈性的控制。本文所提出之最佳化彈性控制演算策略是於穩態情況下,其限制條件可分為各次諧波電流失真與總諧波電流失真限制、最小功率因數與電流不平衡率限制…等等。最後透過MATLAB/Simulink的電腦模擬驗證了所提出新型參考補償電流演算策略在實際模擬補償效果與理論相符,於補償虛功與抑制負載諧波電流與中性線電流上,也比傳統的演算策略較具彈性控制。此新型控制演算策略適合用於規劃與設計主動式電力濾波器,根據不同的目標函式與限制條件。
A new theory and a conceptual design for the three-phase shunt active power filter (APF) control strategy under imbalanced and distorted supply voltages are present in the thesis. Conventionally, the compensation currents injected by the APF are determined according to reference frame transformation-based approaches, where the load instantaneous real and reactive powers are calculated in the new reference frame. The APF injection currents are then computed to maintain the balanced and sinusoidal source currents, as well as the least active power consumption by the APF. However, if current harmonics set by harmonic standards or other constraints are considered, the load harmonic currents after APF compensation can be controlled to meet the requirement. Therefore, the APF may have an adjustable performance. This thesis proposes an optimal algorithm for the APF control in steady state, where the individual and total harmonic current distortion limits, the minimum load power factor, levels of current imbalance, and the size of the APF can be taken into account. The planned APF does not consume or produce the active power and only the passive energy-storage elements are required in the new APF design. Results obtained by simulations with Matlab and Simulink show that the proposed approach is more flexible than the conventional approaches on compensating reactive power and harmonic/neutral currents of the load, even if the source voltages are severely distorted and imbalanced. The new control strategy is very suitable for planning the APF when several alternate objectives and constraints that are under considerations.
Table of Contents
Acknowledgments Ⅰ
Table of Contents Ⅱ
List of figures Ⅴ
List of tables ⅩⅠⅤ
Abstract ⅩⅤⅠ
Chapter 1. Introduction 1
Chapter 2. Harmonics Problems and Mitigation Strategies 5
2.1 Harmonics Theories……………………………………………. 5
2.2 Sources and Effects of Harmonics……………………………... 6
2.2.1 Harmonic Source………………………………………… 6
2.2.2 Effects of Harmonics on Power System Components…… 8
2.3 Solutions for Harmonic Problems……………………………. 10
2.3.1 Equipment for Mitigating Harmonic Currents…………. 10
2.3.2 Passive Filters and Active Filters………………………. 12
Chapter 3. Review of Some APF control Strategies for Determining Reference Compensation Currents 20
3.1 Instantaneous Reactive Power Theory (p-q theory)………….. 20
3.2 Generalized Instantaneous Reactive Power Theory………….. 21
3.3 Positive Sequence Fundamental Wave Strategy……………… 22
3.4 Optimal and Flexible Control Strategy in the
Reference Frame……………………………………………... 26
Chapter 4. Novel Optimization-Based Control Strategies for the Shunt APF 31
4.1 Optimal and Flexible Control Strategy in the a-b-c Reference
Frame…………………………………………………………. 32
4.1.1 Determination of APF Reference Compensation
Currents………………………………………………... 32
4.1.2 Constrained Problem Formulation for Obtaining
Voltage Compensator Gains and Phase Delays………… 35
4.1.2.1 Constraints……………………………………... 35
4.1.2.2 Objective Function……………………………... 38
4.2 An Alternate Control Strategy 40
4.2.1 Determination of APF Reference Compensation
Currents………………………………………………... 40
4.2.2 Optimal APF Control Algorithm……………………… 41
4.2.3 Constrained Problem Formulation for Obtaining Current
Compensator Gains and Phase Delays………………… 43
4.2.3.1 Constraints……………………………………… 43
4.2.3.2 Objective Function……………………………... 45
Chapter 5. Simulation Results 47
5.1 The Configuration of The Three-phase Four-wire APF……… 47
5.2 Utilize Matlab/Simulink Modeling Each Component
of The APF Circuit…………………………………………... 48
5.3 Solution Tool for the Constrained Optimization Problem… 57
5.4 Results Obtained by Using Matlab Simulation……………. 57
5.4.1 Simulation Results for Conventional Approaches ……. 57
5.4.2 OFC and the Alternate Simulation Results……………. 61
5.4.3 Results Obtained by Using Matlab/Simulink/Optimization
Toolbox Simulation……………………………………. 91
Chapter 6. Conclusions and Future Researches 113
6.1 Conclusions……………………………………………….. 113
6.2 Future Work………………………………………………. 114
References 115
Vita 120
References
[1] J. Arrillaga, D. A. Bradley, P. S. Bodger, Power system harmonics, John Wiley & Sons, New York, NY, 1985.
[2] P. G. Cummings, “Estimating effect of system harmonics on losses and temperature rise of squirrel-cage motors,” IEEE Transactions on Industry Applications, Nov./Dec. 1986, pp. 1121-1126.
[3] D. E. Rice, “Adjustable speed drive and power rectifier harmonics — their effect on power system components,” IEEE Transactions on Industry Applications, IA-22 (1), Jan./Feb. 1986, pp. 161-177.
[4] M. Samotyj, “End-use power quality,” EPRI Journal, vol. 14, March 1989, pp. 40-42.
[5] L. Lamarre, “Problems with power quality,” EPRI Journal, vol. 16, July/Aug. 1991, pp. 14-23.
[6] H. Akagi, Y. Kanazawa, and A. Nabae, “Generalized theory of the instantaneous reactive power in three-phase circuits,” Proceedings of IEEJ International Power Electronics Conference (IPEC-Tokyo) (1983) 1375-1386.
[7] H. Akagi, Y. Kanazawa, and A. Nabae, “Instantaneous reactive power compensators comprising switching device without energy storage components,” IEEE Trans. on Industry Applications, vol. IA-20, no.3, May/June 1984, pp. 625-630.
[8] M. Aredes and E. H. Watanabe, “New control algorithms for series and shunt three-phase four-wire active power filters,” IEEE Trans. on Power Delivery, vol. 10, no. 3, July 1995, pp. 1649-1656.
[9] M. Aredes, J. Hafner, and K. Heumann, “Three-phase four-wire shunt active filter control strategies,” IEEE Trans. on Power Electronics, vol. 12, no. 2, March 1997, pp. 311-318.
[10] H. Kim, F. Blaabjerg, B. B. Jensen, and J. Choi, “Instantaneous power compensation in three-phase systems by using p-q-r theory,” IEEE Trans. on Power Electronics, vol. 17, no.5, September 2002, pp. 701-710.
[11] Z. P. Fang and J. S. Lai, “Generalized instantaneous reactive power theory for three-phase power systems,” IEEE Trans. on Instrumentation and Measurement, vol. 45, no. 1, February 1996, pp. 293-297.
[12] Z. P. Fang, G. W. Ott, and D. J. Adams, “Harmonic and reactive power compensation based on the generalized instantaneous reactive power theory for three-phase four-wire systems,” IEEE Trans. on Power Electronics, vol.13, no. 3, July 1998, pp. 1174-1181.
[13] A. Elmitwally, S. Abdelkader, and M. E. Kateb, “Neural network controlled three-phase four-wire shunt active power filter,” IEE Proc.-Gener. Transm. Distrib., vol. 147, no.2, March 2000, pp. 87-92.
[14] J. R. Vazquez and P. Salmeron, “Active power filter control using neural network technologies.” IEE Proc.-Electr. Power Appl., vol. 150, no.2, March 2003, pp. 139-145.
[15] S. M. R. Rafiei, H. A. Toliyat , R. Ghazi, and T. Gopalarathnam, “An optimal and flexible control strategy for active filtering and power factor correction under non-sinusoidal line voltages,” IEEE Trans. on Power Delivery, vol. 16, no.2, April 2001, pp. 297-305.
[16] IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power Systems, IEEE Std. 519-1992, 1993.
[17] Electromagnetic compatibility (EMC). Limits for harmonic current emissions, IEC 61000-3-2:2000, Switzerland, 2001.
[18] G. W. Chang, “Harmonics theory,” Chapter 2, IEEE Tutorial on Harmonic Modeling, 1998 IEEE PES WM and SM.
[19] G. W. Chang and Y. Liu, “Modeling of nonlinear components for harmonic studies,” IEEE Power Engineering Society General Meeting, Vol. 2, July 13-17 2003, pp. 1188 — 1193.
[20] J. S. Subjak, Jr. and J. S. Mcqulkin, “Harmonics — causes, effects, measurements, and analysis: an update,” IEEE Trans. on Industry Applications, vol. 26, no.6, Nov./ Dec. 1990, pp. 1034-1042.
[21] L. Gyugyi and E. C. Strycula, “Active ac power filters,” Proceedings of IEEE/IAS Annual Meeting, 1976, p. 529.
[22] H. Akagi, A Nabae, and S. Atoh, “Control strategy of active power filters using multiple voltage-source PWM converters,” IEEE Trans. on Industry Applications, vol. IA-22, 1986, pp. 460-465.
[23] H. Kawahira, T. Nakamura, S. Nakazawa, and M. Nomura, “Active power filters,” in Proc. 1983 Int.Power Electronics Conf., Tokyo, Japan, 1983, pp. 981-992.
[24] P. T. Cheng, Y. F. Huang, and C. C. Hou, “A new harmonic suppression scheme for three-phase four-wire distribution systems,” Applied Power Electronics Conference and Exposition, Sixteenth Annual IEEE, Vol. 2, 4-8 March 2001, pp. 1287 —1293.
[25] P. P. Khera, “Application of zigzag transformers for reducing harmonic in the neutral conductor of low voltage distribution system,” Conference Records of the 1990 IEEE ISA Annual Meeting , vol. 2, 1990, pp. 1092.
[26] N. Mohan, H. A. Peterson, W. F. Long, G. R. Dreifuerst, and J. J. Vithayathil, “Active filters for AC harmonic suppression,” Proceedings of the IEEE-PES Winter Meeting, paper A77026-8, 1977.
[27] G. W. Chang and T. C. Shee “A novel reference compensating currents of the three-phase shunt active power filter,” to appear in IEEE Trans. on Power Delivery. (SCI, EI)
[28] C. C. Chen and Y. Y. Hsu, “A novel approach to the design of a shunt active filter for an unbalanced three-phase four-wire system under nonsinusoidal conditions,” IEEE Trans. on Power Delivery, vol. 4, no. 15, Oct. 2000, pp. 1258-1264.
[29] Optimization Toolbox User’s Guide for Use with Matlab, Version 2, The MathWorks Inc., 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔