跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 14:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭人豪
研究生(外文):Jen-Hao Hsiao
論文名稱:乙基纖維素以花青素染料之改質與性質之探討
論文名稱(外文):Study on the Modification and Properties of Ethyl Cellulose with Cyanine Dye.
指導教授:華沐怡
指導教授(外文):Mu-Yi Hua
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:116
中文關鍵詞:乙基纖維素花青素螢光共振能量轉移
外文關鍵詞:ethyl cellulosecyanineindolefluorescence resonance energy transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文研究的目的在於合成以乙基纖維素 (ethyl cellulose) 為主鏈結構、側鏈含有不同結構大小的螢光分子包括:吲哚 (indole) 和花青素 (cyanine) 染料,並利用光譜分析 (Ultraviolet Visable Spectroscopy,UV-Vis;Infrared Spectroscopy,IR;Photoluminescence Spectroscopy,PL),熱性質分析 (Thermogravimetric Analyzer,TGA;Differential Scanning Calorimeter,DSC),結晶行為分析 (DSC;Polarized Optical Microscope,POM),以及其他物性分析 (solubility;Gel Permeation Chromatograph,GPC) 等,探討乙基纖維素接上不同側鏈後的結構及物性變化,以及不同側鏈結構對於螢光能量轉移 (fluorescence energy transfer) 現象之影響。
由GPC 結果我們可推測在乙基纖維素上吲哚及花青素的接枝率分別為 47% 和 65%。從 DSC 結果可知,乙基纖維素接上短鏈的染料如吲哚衍生物時,側鏈的吲哚環相互堆疊可誘導主鏈規則排列,使得主鏈的熱運動往高溫位移,Tg 與 Tm 會有上昇的趨勢。當接上長鏈的染料如花青素衍生物後,側鏈越大會使得乙基纖維素鏈與鏈之間的自由體積 (free volume) 增加, Tg 與 Tm 則會有往低溫位移的情形。從 UV 及 PL 光譜可發現,接枝吲哚染料的 ECE233B 吸收及發光光譜有大區域的重疊並有拖尾的產生,主要是螢光分子之間堆疊緊密所產生螢光能量轉移的現象。接枝花青素染料的 ECE233B//233BI 則是自由體積增大,降低了相互堆疊的機會,因此 UV 及 PL 只有少部分區域重疊,能量轉移不甚明顯。在結晶型態方面,由 POM 結果可知,側鏈為不同結構大小的染料時會改變其結晶型態,由典型的馬爾它十字球晶 (maltese cross) → 花朵十字球晶 → 同心圓盤結晶 (concentric disklike texture spherulite)。最後,從 TGA 結果可知,無論是吲哚或花青素染料經過接枝在高分子上後,其耐熱性相對於單一染料而言均有顯著的提升。

The aim of this study is to synthesis ethyl cellulose grafted with dye moleculars, such as indoles and cyanine dyes. The optical properties of synthesized materials were analyzed by Ultraviolet-Visible (UV-Vis) Spectroscopy, Infrared (IR) Spectroscopy, and Photoluminescence Spectroscopy (PL). The thermal properties were measured by Thermogravimetric Analyzer (TGA) and Differential Scanning Calorimeter (DSC). The crystallization phenomena were investigated by DSC and Polarized Optical Microscope (POM). The solubility and Gel Permeation Chromatograph (GPC) were also tested. The correlations between the structural and physical properties and the fluorescence energy transfer of the dye-grafted ethyl cellulose are investigated and discussed.
The grafting ratio of indole and cyanine dye on ethyl cellulose were 47% and 65%, respectively, as analyzed by GPC. From the DSC result indicated that Tg and Tm of indole-grafted ethyl cellulose (ECE233B) shifted toward higher temperatures, which is due to the regular main chain alignment induced by the mutual stacking of indole ring. In contrast, Tg and Tm of cyanine-grafted ethyl cellulose (ECE233B//233BI) shifted toward lower temperatures. This is attributed to the increase of free volume between main chains of ethyl cellulose, resulting from the larger size of cyanine dye. The large overlapping and tailing of absorption (UV-Vis) and emission (PL) spectra of indole-grafted ethyl cellulose (ECE233B) indicate the obvious transfer of fluorescence energy, which is attributed to the compact stacking of indole rings. Due to the larger free volume of cyanine-grafted ethyl cellulose (ECE233B//233BI), the fluorescence energy transfer is not so obvious and only a minor overlapping of absorption (UV-Vis) and emission (PL) spectra were observed. The structures of ethyl cellulose were varied with the different grafting moleculars, which were from typical maltese cross, then flower cross and finally concentric disklike texture spherulite as measured by POM. Finally, it is found that the thermal resistances of indoles and cyanine dyes were greatly improved by grafting with polymers.

誌謝 ---------------------------------------------------------Ι
中文摘要 ----------------------------------------------------ΙΙ
英文摘要 -----------------------------------------------------V
目錄 --------------------------------------------------------VΙ
圖目錄 ------------------------------------------------------ΙX表目錄 ----------------------------------------------------XΙΙΙ
第一章 緒論 --------------------------------------------------1
1-1 前言 -----------------------------------------------------1
1-2 本文研究目的 ---------------------------------------------2
第二章 文獻回顧 ----------------------------------------------4
2-1 簡介 -----------------------------------------------------4
2-2 染料之固定化技術 -----------------------------------------6
2-2-1 化學法 -------------------------------------------------6
2-2-1-1 線性高分子 -------------------------------------------6
2-2-1-2 聚醣類高分子 ----------------------------------------12
2-2-1-3 導電性高分子 ----------------------------------------13
2-2-2 物理法 ------------------------------------------------15
2-2-2-1 包埋方式 --------------------------------------------15
2-2-2-2 溶膠-凝膠方式 ---------------------------------------17
2-3 螢光原理 ------------------------------------------------18
2-3-1 有機分子結構對螢光影響 --------------------------------21
2-3-2 螢光共振能量轉移 --------------------------------------22
2-4 乙基纖維素之簡介 ----------------------------------------24
2-4-1 乙基纖維素的改質 --------------------------------------26
2-4-2 乙基纖維素之應用 --------------------------------------28
2-5 吲哚之簡介 ----------------------------------------------30
2-5-1 吲哚衍生物 --------------------------------------------32
2-5-2 花青素之簡介 ------------------------------------------34
2-5-2-1 花青素應用於生物技術 --------------------------------35
2-5-2-2 花青素應用於光記錄染料 ------------------------------39
第三章 實驗內容 ---------------------------------------------41
3-1 實驗藥品 ------------------------------------------------41
3-2 實驗步驟 ------------------------------------------------42
3-2-1 乙基纖維素鹼化 ----------------------------------------42
3-2-2 乙基纖維素接枝 1,2-二氯乙烷 ---------------------------42
3-2-3 6-(2-氯乙基) 乙基纖維素接枝吲哚染料 ------------------43
3-2-4共軛鍵結花青素衍生物 -----------------------------------44
3-3 實驗儀器 ------------------------------------------------46
第四章 乙基纖維素及其衍生物之結構鑑定 -----------------------49
4-1 溶解度 (solubility) -------------------------------------49
4-2 凝膠滲透層析 (GPC) 分析 ---------------------------------51
4-3 紅外光光譜 (IR) 分析 ------------------------------------55
4-4 微差掃描熱卡計 (DSC) 分析 -------------------------------66
4-5 紫外光/見光光譜及螢光光譜 (UV/Vis & PL spectroscopy) 分析
4-5-1 液態 (liquid condition) -------------------------------70
4-5-2 固態 (solid condition) --------------------------------80
4-5-3 變溫固態 UV/Vis ---------------------------------------92
4-6 偏光顯微鏡 (POM) 分析 -----------------------------------98
4-7 熱重損失 (TGA) 分析 ------------------------------------106
第五章 結論 ------------------------------------------------110
第六章 參考文獻 --------------------------------------------112
圖目錄
Figure 1-1 Different forms of luminescence materials. ----------- 2
Figure 2-1 Green fluorescent protein. ------------------------------- 5
Figure 2-2 Polymer of the N-methylolacrylamide, acrylamidoglycolic acid and acrylic acid grafting of the fluorescent. -------------------------------------------- 7
Figure 2-3 Fluorescence lifetime of Poly (N-methylol acrylamide) bonding thionine. -------------------------- 10
Figure 2-4 (a) Emission spectra of PPIX in chlorodorm and of poly(MAAM) bound dyes in aqueous solution ; λex = 400nm. (b) Emission spectra of monomeric thionine (λex = 600nm) and poly (TH-MAAM-co- PPIX) (λex=610nm) in aqueous solution. -------------- 11
Figure 2-5 Hydroxypropyl cellulose grafting pyrene and fluorine. ---------------------------------------------------- 12
Figure 2-6 Polythiophene grafting different kinds of substituent group-------------------------------------------------------- 14
Figure 2-7 (a) Substituent effected the electroluminescence of poly(thiophene), (b) Voltage control of electroluminescence. ------------------------------------- 14
Figure 2-8 Voltage dependence of electroluminescence form a 50:1 IV/II blend in a PBD/polymer—blend LED using a Ca/Al electrode on a polymer layer deposited by spinning on the ITO substrate. ---------- 15
Figure 2-9 TTC dissolution------------------------------------------- 16
Figure 2-10 Various of maxtri immobilized TTC at UV region absorption. ------------------------------------------------- 16
Figure 2-11 Encapsulated cyanine by sol-gel technique.----------- 17
Figure 2-12 Two kinds of aggregate of the cyanine: J-aggregates and H-aggregates. ---------------------------------------- 17
Figure 2-13 Diagram of fluorescence and phosphorescence form. ------------------------------------------------------- 20
Figure 2-14 Diagram of up conversion. ------------------------------ 20
Figure 2-15 (a) Ethyl cellulose structure, (b) Preparation of the ethyl cellulose. -------------------------------------------- 25
Figure 2-16 Esterification of ethyl cellulose and acetic anhydride. ------------------------------------------------- 26
Figure 2-17 Esterification of ethyl cellulose and acid chlorides.--------------------------------------------------- 27
Figure 2-18 Reduction of the indigo. --------------------------------- 31
Figure 2-19 Basic of indole structure. -------------------------------- 31
Figure 2-20 Indoel elecrtophilic reaction. --------------------------- 32
Figure 2-21 Alkaloid of indole derivatives. ------------------------- 33
Figure 2-22 (a) 2,3,3-trimethylindolenine structure, (b) Basic of cyaninestructure. ----------------------------------------- 34
Figure 2-23 (a) Cy5, (b) Cy3. ----------------------------------------- 35
Figure 2-24 Cy5 bonding on DNA reaction. ------------------------ 36
Figure 2-25 Novel near-IR luminescence materials. --------------- 39
Figure 3-1 Alkalization of Ethyl cellulose. ------------------------- 42
Figure 3-2 The grafting reactions of ethyl cellulose with 1,2- dichloroethane. ------------------------------------------- 42
Figure 3-3. Grafting reactions of 6-(2-chloroethyl)-ethyl cellulose with various dyes. ----------------------------- 44
Figure 3-4. Grafting reactions of Ethyl cellulose with cyanine derivatives. ------------------------------------------------ 45
Figure 4-1 Structure of EC, ECE, ECE233B, ECE233B//233BI evaluated by GPC. --------------------------------------- 54
Figure 4-2 IR spectra (4000~400 cm-1) of (a) 233, (b) DCE, (c) EC, (d) ECE, (e) ECE233. ------------------------------ 59
Figure 4-3 IR spectra (4000~400 cm-1) of (a) 233B, (b) DCE, (c) EC, (d) ECE, (e) ECE233B. ------------------------ 60
Figure 4-4 纖維素鹼化所產生的氧化負反應. ------------------- 61
Figure 4-5 IR spectra (4000~400 cm-1) of (a) 233I, (b) 233I//233I, (c) EC233B, (d) ECE233B//233I. -------- 62
Figure 4-6 IR spectra (4000~400 cm-1) of (a) 233BI, (b) 233BI//233BI, (c) EC233B, (d) ECE233B//233BI. --------------------------------------------------------------- 63
Figure 4-7 DSC spectra of EC, ECE, ECE233B and ECE233B//233BI scanning from 10 °C to 200 °C at a heating rate of 20 °C/min. ----------------------------- 68
Figure 4-8 DSC spectra of EC, ECE, ECE233B and ECE233B//233BI scanning from 200 °C to 10 °C at a heating rate of 20 °C/min. ----------------------------- 69
Figure 4-9 UV/Vis spectra of EC, 233B, ECE233B, ECE/233B blending (mole ratio 2:1), 233BI//233BI and ECE233B//233BI in acetone solutions. --------------- 74
Figure 4-10 UV-Vis spectra of ECE/233B blends with at various mole ratios in acetone solutions. ----------------------- 75
Figure 4-11 PL spectra of EC, 233B, ECE233B and ECE233B//233BI in acetone solutions (λEx = 365 nm). -------------------------------------------------------- 76
Figure 4-12 PL spectra of ECE/233B blends with various mole ratios in acetone solutions (λEx = 365 nm). ------------ 77
Figure 4-13 (a) UV-Vis and PL spectra of ECE233B. (b) UV-Vis and PL spectra of ECE233B//233BI (λEx = 365 nm). --------------------------------------------------------------- 78
Figure 4-14 UV-Vis spectra of EC, 233B, ECE233B, 233BI//233BI and ECE233B //233BI films. ---------- 83
Figure 4-15 (a) UV-Vis spectra of ECE233B//233BI solid film and in acetone solution. (b) schemation liquid veiw of photoluminescence mechanism. -------------------- 84
Figure 4-16 PL spectra of EC, 233B, ECE233B and ECE233B//233BI films (λEx = 365 nm). --------------- 85
Figure 4-17 The schematic view of the mechanism of fluorescence energy transfer between ECE and 233B. ------------------------------------------------------- 87
Figure 4-18 PL spectra of EC, ECE233B and ECE233B//233BI films (λEx = 250 nm). ------------------------------------- 88
Figure 4-19 PL spectra of EC films at various excited wavelength------------------------------------------------- 89
Figure 4-20 PL spectra of ECE233B films at various excited wavelength. ----------------------------------------------- 90
Figure 4-21 PL spectra of ECE233B//233BI films at various excited wavelength. -------------------------------------- 91
Figure 4-22 (a) UV-Vis spectra of EC films as a function of temperature. (b) Transmittance of EC film at 250 nm and 300 nm as a function of temperature. -------- 95
Figure 4-23 (a) UV-Vis spectra of ECE233B films as a function of temperature. (b) Transmittance of ECE233B film at 245 nm and 300 nm as a function of temperature. --------------------------------------------------------------- 96
Figure 4-24 (a) UV-Vis spectra of ECE233B//233BI films as a function of temperature. (b) Transmittance of ECE233B//233BI film at 255, 310, 376 and 486 nm as a function of temperature. ---------------------------- 97
Figure 4-25 Photographs of POM patterns (a) EC (×5000), (b) ECE (×5000). --------------------------------------------- 101
Figure 4-26 Photographs of POM patterns (a) ECE233B (×2000), (b) ECE233B (×5000). ----------------------- 102
Figure 4-27 Lateral view of ECE233B lamellae arrangement. --------------------------------------------------------------- 103
Figure 4-28 Scheme of the Frank-Pryce model. (a) Concentric circles, disclination line perpendicular to the viewing direction, XZ projection. (b) bispirals, disclination line parallel to the viewing direction, XY projection. (c) and (d) the director fields on different spheres, the spheres of (d) have an rotating angle with that of (c). ------------------------------------ 104
Figure 4-29 (a) Scheme of POM pattern of ECE233B//233BI (×5000). (b) Lateral view of ECE233B//233BI lamellae arrangement. ----------------------------------- 105
Figure 4-30 TGA weight loss as and their derivations with temperature curves of EC, 233B, ECE, ECE233B, ECE233B//233BI and ECE/233B blend (mole ratio ECE/233B = 2/1). ---------------------------------------- 108
表目錄
Table 2.1 Fluorescence lifetime of poly (N-methylolacrylamide) and poly (acrylamidoglycolic acid) bonding thionine. ----------------------------------------------------------------- 8
Table 2.2 Fluorescence lifetime of the poly (N-methylo lacrylamide) bonding phenosafranine. ------------------ 9
Table 2.3 Lifetimes of monomeric thionine and polymer bound thionine in aqueous solution ; λex = 610nm and λem = 640nm. ------------------------------------------------------- 11
Table 2.4 Different kinds of DNA target of cyanine derivatives.--------------------------------------------------- 37
Table 4-1 Solubility(a) of EC, 233B, 233, ECE233, ECE233B, ECE233B//233I and ECE233B//233BI in various solvents. ----------------------------------------------------- 50
Table 4-2 GPC data of EC, ECE, ECE233B and ECE233B//233BI in THF solvent. ----------------------- 53
Table 4-3 Assignment of the main peaks in the IR spectra of EC, DCE, 233, 233B, ECE, ECE233, ECE233B. ----- 64
Table 4-4 Assignment of the main peaks in the IR spectra of 233I, 233BI, 233I//233I, 233BI//233BI, ECE233B//233I, ECE233B//233BI. --------------------- 65
Table 4-5 Glass transition temperature (Tg ), melting temperature (Tm) and enthalpy (∆H) of EC, ECE, ECE233B and ECE233B//233BI measured by DSC. ------------------- 68
Table 4-6 Crystal temperature (TC ) and enthalpy (∆H) of EC, ECE, ECE233B and ECE233B//233BI measured by DSC. --------------------------------------------------------- 69
Table 4-7 UV-Vis absorption spectra of EC, 233B, ECE233B, ECE/233B blending (mole ratio 2:1), 233BI//233BI and ECE233B//233BI in acetone solutions. ------------ 74
Table 4-8 UV-Vis spectra of ECE/233B blends with various mole ratios in acetone solutions. ------------------------- 75
Table 4-9 PL emission spectra of EC, 233B, ECE233B and ECE233B// 233BI in acetone solutions (λEx = 365 nm). ---------------------------------------------------------- 76
Table 4-10 PL spectra of ECE/233B blends with various mole ratios in acetone solutions (λEx = 365 nm). ------------- 77
Table 4-11 UV-Vis and PL spectra of ECE233B, ECE233B//233BI in acetone solutions. ----------------- 78
Table 4-12 Photographs of EC, 233B, ECE233B, ECE233B//233BI luminescence (λEx = 365 nm) in acetone solution with and without UV-light irradiation. --------------------------------------------------- 79
Table 4-13 UV-Vis absorption spectra of EC, 233B, ECE233B, 233BI//233BI and ECE233B//233BI films. ------------ 83
Table 4-14 PL emission spectra of EC, 233B, ECE233B and ECE233B//233BI films (λEx = 365 nm). ---------------- 85
Table 4-15 Photographs of EC, 233B, ECE233B, ECE233B//233BI luminescence (λEx = 365 nm) films with and without UV-light irradiation. ------------------ 86
Table 4-16 PL spectra of EC, ECE233B and ECE233B//233BI films (λEx = 250 nm). --------------------------------------- 88
Table 4-17 PL spectra of EC films at various excited wavelength.-------------------------------------------------- 89
Table 4-18 PL spectra of ECE233B films at various excited wavelength. ------------------------------------------------- 90
Table 4-19 PL spectra of ECE233B//233BI films at various excited wavelength. ---------------------------------------- 91
Table 4-20 Temperature (°C) at weight loss 5 wt% (T5wt%) and maximum decomposition (Tmax) of EC, 233B, ECE, ECE233B, ECE233B //233BI. --------------------------- 109

1. M. F. Choi, J. Photochem. Photobiol., A Chem., 104, 207 (1997).
2. M. F. Choi, J. Photochem. Photobiol., A Chem., 114, 235 (1998).
3. Y. You, Y. He, P. E. Burrows, S. R. Forrest, N. A. Petasis, M. E. Thompson, Adv. mat., 12, 1678 (2000).
4. R. Tamilarasan, P. Natarajan, Nature, 292, 224 (1981).
5. R. Ramaraj, P. Natarajan, Chem. Phys. Lett., 113, 108 (1985).
6. K. Viswanathan, P. Natarajan, J. Photochem. Photobiol., A Chem., 95, 245 (1996).
7. E. Balasubramaniam, P. Natarajan, J. Photochem. Photobiol., A Chem., 103, 201 (1997).
8. G. B. Dutt, S. Doraiswamy, N. Periasamy, J. Chem. Phys., 94, 5360 (1991).
9. K. R. Gopidas, P. V. Kamat, J. Photochem. Photobiol., A Chem., 48, 291 (1989).
10. F. M. Winnik, M. A. Winnik, S. Tazuke, Macromolecules, 20, 38 (1987).
11. F. M. Winnik, Macromolecules, 20, 2745 (1987).
12. F. M. Winnik, Macromolecules, 22, 734 (1989).
13. K. Horie, H. Ushiki, F. M. Winnik, 〞Molecular Photonics〞, P58, Wiley, New York, 2000.
14. G. A. F. Roberts, J. M. Thomas, Polymer, 19, 459 (1978).
15. M. Berggren, O. Inganas, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjertberg, O. Wennerstrom, Nature, 372, 444 (1994).
16. B. Themans, W. R. Salaneck, J. L. Bredas, Synth. met., 28, 359 (1989).
17. S. Ebraheem, A. A. Fattah, F. I. Said, Z. I. Ali, Radiat. Phys. Chem., 57, 195 (2000).
18. 1A.A. Fattah, F.I. Said, S. Ebraheem, M. E. Kelany, A. A. Miligy, Radiat. Phys. Chem., 54, 271 (1999).
19. S. Ebraheem, S. Eid, A. Kovacs, Radiat. Phys. Chem., 63, 807 (2002).
20. A. K. Pikaev, Z. K. Kriminskaya, Mendeleev Commun. 200 (1995).
21. H. Zhou, T. Watanabe, A. Mito, I. Honma, K. Asai, K. Ishigure, Mater. lett., 57, 589 (2002).
22. H. S. Zhou, T. Watanabe, A. Mito, I. Honma, K. Asai, K. Ishigure, M. Furuki, Mater. Sci. Eng. B., 95, 180 (2002).
23. D. L. Morel, E. L. Stogryn, A. K. Ghosh, T. Feng, P. E. Purwin, R. F. Shaw, C. Fishmann, G. R. Bird, A. P. Piechowski, J. Phys. Chem., 923 (1984).
24. 高逢時,” 黑夜的精靈-螢光體”,科學發展,2003, p. 64.
25. http://www.suda.edu.cn/department/jgy/research/ir.htm
26. 游振宗,”天然纖維素纖維 : 纖維理化”,超級科技, 民78 [1989], p. 58.
27. 蔡燕鈴,”含水溶性藥物之乙基纖維素微膠囊的製備”,國立中央大學博士論文,1990, p. 27.
28. K. Balser, L. Hoppe, T. Eicher, M. Wendel, A. J. Astheimer, 〞Ullmann’s encyclopedia of industrial chemistry, 5th ed〞, P461, Weinheim, New York, 1986.
29. J. X. Guo, D. G. Gray, Macromolecules, 22, 2082 (1989).
30. J. X. Guo, D. G. Gray, Macromolecules, 22, 2086 (1989).
31. J. C. Thies, J. M. G. Cowie, Polymer, 42, 1297 (2001).
32. A. T. Nouh, M. H. Shabourg, A. H. Gawad, J. Drug. Res., 14, 211 (1983).
33. D. Milovanoric, J. G. Norin, Drug Devel. Ind. Pharm., 12, 1249 (1986).
34. P. V. Parab, C. K. Oh, W. A. Ristschel, Drug Devel. Ind. Pharm., 13, 449 (1987).
35. S. Y. Lin, Y. L. Tzan, C. J. Lee, J. Microencapsulation, 8, 537 (1991).
36. T. Hideo, O. Takashi, K. Masao, Chem. Pharm. Bull., 40, 729 (1992).
37. A. B. Savage, “Ethyl cellulose in Encyclopedia of Polymer Science and Technology”, Phenum Press, New York, 1965, p. 475.
38. D. C. Miles, J. H. Briston, Polym. Plast. Technol. Eng., 442 (1979)
39. R. Arshady, Polym. Eng. Sci., 30, 905 (1990).
40. J. R. Nixon, U. Nimmannit, J. Microencapsulation, 2, 103 (1985).
41. Y. Nishikawa, B. I. Carr, M. Wang, S. Kar, F. Finn, J. Biological. Chem., 270, 270 (1995).
42. M. Venugopal, J. M. Jamison, J. Gilloteaux, J. A. Koch, J. Nat. Resour. Life Sic. Educ., 59, 1389 (1996).
43. R. S. Werbowyi, D. G. Gray, Mol. Cryst. Liq. Cryst., 34, 97 (1979).
44. D. A. Vries, Acta. Crystallogr., 4, 219 (1951).
45. J. Chen, Y. Huang, S. Yan, J. Appl. Polym. Sci., 45, 2153 (1992).
46. C. Wu, Y. Huang, S. Chen, Polym. Bull. 48, 33 (2002).
47. X. G. Li, M. R. Huang, L. Hu, P. C. Yang, Eur. Polym. J., 35, 157 (1999).
48. A. Y. Houde, S.A. Stern, J. Membr. Sci., 127, 171 (1997).
49. Y. Wang, A. J. Easteal, J. Membr. Sci., 157, 53 (1999).
50. K. Eaton, Sens. Actuators, B Chem., 85, 42 (2002).
51. Y. Wang, A. J. Easteal, J. Appl. Polym. Sci., 71, 1303 (1999).
52. X. G. Li, M. R. Huang, G. Lin, Sep. Sci. Technol., 29, 671 (1994).
53. A. Suwaiyan, R. Zwarich, Spectrochim. Acta., 42, 1017 (1986).
54. H. Zimmermann, N. Z. Joop, Elektrochemische., 61, 65 (1961).
55. R. N. Adams, Anal. Chem., 48, 1130 (1976).
56. T. Mennini, M. Gobbi, D.Crespi, M.Cinquanta, E. Frittoli, P. Giorcelli, M. Anelli, S. Caccia, Pharmacol. Biochem. Behav., 53, 155 (1996).
57. T, Lin, B. X. Peng, Dyes Pigm., 35, 331 (1997).
58. N. I. Gadjev, T. G. Deligeorgiev, S. H. Kim, Dyes Pigm., 40, 181 (1999).
59. N. I. Gadjev, T. G. Deligeorgiev, I. I. Timtcheva, V. A. Maximova, H. E. Katerinopoulos, Dyes Pigm., 44, 131 (2000).
60. S. M. Yarmoluk, M. Y. Losytskyy, V. M. Yashchuk, J. Photochem. Photobiol., B Biol., 67, 57 (2002).
61. M. Z. Hossain, L. A. Ernst, J. I. Nagy, Neurosci. Lett., 184, 71 (1995).
62. http://www.synthegen.com/Action.lasso?-Response=/catalog/subgroup.lasso&-Token.SubgroupID=7
63. J. H. Flanagan, S. H. Khan, S. Menchen, R. P. Hammer, Bioconjugate Chem., 8, 751 (1997).
64. P. Chen, S. Sun, Y. Hu, Z. Qian, D. Zheng, Dyes Pigm., 41, 227 (1999).
65. Z. Dai, L, Qun, B, Peng, Dyes Pigm., 36, 243 (1997).
66. C. Viney, W. S. Putnam, Polymer, 36, 1731 (1995).
67. M. S. Mehata, H. C. Joshi, H. B. Tripathi, Spectrochim. Acta. Part A : Mol. Biomol. Spectrosc., 58, 1589 (2002).
68. R. M. Silverstin, F. X. Webster, “Spectrometric Identification of Organic Compounds”, P136, Wiley, New York, 1998.
69. F. L. Boschke, W. Fresenius, J. F. K. Huber, E. Pungor, G. A. Rechnitz, W. Simon, “Tables of Spectral Data for Structure Determination of Organic Compounds”, P160, Springer Verlag, 1989.
70. K. Y. Peng, S. A. Chen, W. S. Fann, J. Am. Chem. Soc., 123, 11388 (2001).
71. S. A. Chen, J. M. Ni, Macromolecules, 25, 6081 (1992).
72. T. Miteva, L. Palmer, L. Kloppenburg, D. Neher, U. H. F. Bunz, Macromolecules, 33, 652 (2000).
73. L. Wang, Y. Huang, Macromolecules, 35, 3111 (2002).
74. C. Robinson, J. C. Ward, R. B. Beevers, Discuss. Faraday Soc., 25, 29 (1958).
75. C. Robinson, Mol. Cryst., 1, 467 (1966).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top