跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 08:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉明德
研究生(外文):M. D. Liu
論文名稱:以準分子雷射退火進行再結晶之分析與模擬
論文名稱(外文):Analysis and Simulation of Excimer Laser Annealing for Recrystallization of Amorphous Silicon Films
指導教授:張睿達
指導教授(外文):R. D. Chang
學位類別:碩士
校院名稱:長庚大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:51
中文關鍵詞:再結晶退火準分子雷射熱傳蒙地卡羅法
外文關鍵詞:RecrystallizationAnnealExcimer laserHeat transferMonte Carlo method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
? ? 本篇研究的目的在於探討準分子雷射退火的過程,為了進一步的提升多晶矽膜的電子遷移率,結晶機制的瞭解是重要的前提。吾人觀察以 0.15 至 0.33 雷射能量退火後的非晶矽膜,非晶矽膜分別為 50nm 和 400nm 的厚度,由實驗的資料顯示出了部分融化、完全融化及近乎完全融化的結晶現象並對應於不同的退火條件。之後吾H藉由數值方法模擬出非晶矽膜中的溫度變化,模擬的結果顯示了輻射不同雷射能量時表面融化的寬度。吾人對非晶矽的熱傳導係數和雷射的反射及吸收係數和實驗數據進行校正。隨後藉由使用蒙地卡羅的方式,吾人去模擬再結晶的過程,並調整介面自由能、及成核和成長的前項因子去校正,得到模擬的結果符合實驗的數據。吾人建立了準分子雷射退火的模擬系統以得到二維的溫度分佈和三維的結晶分佈。

Abstract
Analysis of the annealing process during excimer laser irradiation was discussed in the research. The mechanisms of grain growth were studied for promoting mobility of poly crystalline films. The experiments of laser annealing were designed to observe recrystalline phenomenon for 50 nm and 400 nm amorphous silicon films at laser energies from 0.15 to 0.33 . Experimental data revealed partial melting, complete melting and near complete melting in different conditions during laser annealing. Temperatures in films were simulated by numerical methods. Simulation results also show molten widths at different laser energy. Conductivity of amorphous silicon, absorption coefficient and reflectivity of laser were calibrated by experimental data. Monte-Carlo method was used to simulate recrystallization process. The interface free energy, prefactors of nucleation and growth were calibrated. The simulation results are consist with experimental data. We built up a simulation system for excimer laser annealing to get two-dimensional temperature distributions and three-dimensional grain distributions.

Table of Contents
指導教授推薦書
口試委員會審定書
授權書………………………………………………………………….…….. iii
誌謝……………………………………………………………….……….….iv
Figure List……………………………………………….………..…………vi
Table List……………………………………………………………….……...……x
中文摘要……………………………………………….……..…………….xi
Abstract………………………………………………….…………………..xii
CHAPTER 1 Introduction……………………….……...……...…….. 1
1-1 Liquid-crystal display……………..……………………………...1
1-2 Development of low temperature poly silicon …………….……2
1-3 Research purpose……………..……………………………………3
CHAPTER 2 Theory of Excimer laser annealing…………............ 5
2-1 Heat transfer……………………………………………….……… 7
2-2 Laser irradiation………………………………………………… 9
2-3 Recrystallization…………………………..…………….……..10
CHAPTER 3 Experiment and observation……..…………..…….. 15
3-1 SEM plant-view observations………..………………………… 17
3-2 SIMS analysis……………………………………..………….. 23
3-3 Grain size distribution and image processing …..………… 25
CHAPTER 4 Simulation of Recrystallization by ELA……….…. 29
4-1 Heat transfer simulation …..………………………………… 29
4-2 Grain growth simulation …..………………………………… 39
CHAPTER 5 Conclusion……….……….…………………………… 47
REFERENCES

Reference:
[1] Do-Hyun Choi, Eiichi Sadayuki, Osamu Sugiura, and Masakiyo Matsumura, “Lateral growth of Poly-Si Film by Excimer Laser and Its Thin Film Transistor Application”, Jpn. J. Appl. Phys. Vol. 33, Part 1,No. 1A, pp. 70-74, 1994.
[2] G. K. Giust, and T. W. Sigmon, “High-Performance Thin-Film Transistors Fabricated Using Excimer Laser Processing and Grain Engineering”, IEEE Transaction on Electron Devices Vol. 45, No. 4, pp. 925-932, 1998.
[3] Noriyoshi Yamauchi, and Rafael Reif, “Polycrystalline Silicon Thin Films Processed with Silicon Ion Implantation and Subsequent Solid-Phase Crystallization: Theory, Experiments, and thin-film transistor applications”, J. Appl. Phys. Vol. 75, pp. 3235-3257, 1994.
[4] Tsung-Kuna A, Chou and Jerzy Kanicki, “Two-Dimensional Numerical Simulation of Solid-Phase-Crystallized Polysilicon Thin-Film Transistor Characteristics”, Jpn. J. Appl. Phys. Vol. 38, pp. 2251-2255, 1999.
[5] S. D. Brother, D. J. McCulloch, J. B. Clegg, and J. P. Gowers, “Excimer-Laser-Annealed Poly-Si Thin-Film Transistors”, IEEE Transactions on Electron Devices Vol. 40, No. 2, pp. 407-413, 1993.
[6] R.F. Wood, G.E. Giles, “Macroscopic theory of pulsed-laser annealing. I. Thermal transport and melting”, Phys. Rev. B Vol. 23, Number 6, pp. 2923-2942 , 1981.
[7] Hiroyuki Kuriyama, Seiichi Kiyama, Shigeru Noguchi, Takashi Kuwahara, Satoshi Ishida, Tomoyuki Nohda, Keiichi Sano, Hiroshi Iwata, Hiroshi Kawata, Masato Osumi, Shinya Tsuda, Shoichi Nakano and Yukinori Kuwano, “Enlargement of Poly-Si Film Grain Size by Excimer Laser Annealing and Its Application to High-performance Poly-Si Thin Film Transistor”, Jpn. J. Appl. Phys. Vol. 30, pp. 3700-3703, 1991.
[8] Toshio Kudo, Daiji Ichishima and Cheng-Guo Jin, “Simulation of Polycrystallines Silicon Growth by pulsed Excimer Laser Annealing”, Mat. Res. Soc. Symp. Vol. 617, pp. J1.6.1-J1.6.6, 2000.
[9] K. Winer, G. B. Anderson, S. E. Ready R. Z. Bachrach, R. I. Johnson, F. A. Ponce, “Excimer-laser-induced crystallization of hydrogenate amorphous silicon”, Appl. Phys. Lett. 57 (21), pp. 2222-2224, November 1990.
[10] J. Narayan and C. W. White, “Pulsed Laser Meltingof Amorphous Silicon Layer”, Appl. Phys. Lett. 44 (1), pp 35-37, January 1984.
[11] Michael O. Thomson, G. J. Galvin, J. W. Mayer, P. S. Peercy, J. M. Poate, D. C. Jacobson, A. G. Cullis and N. G. Chew, “Melting Temperature and Explosive Crystallization of Amorphous Silicon during Pulsed Laser Irradiation”, Phys. Rev. Lett. Vol. 52, pp 2360-2363, 1984.
[12] J. Y. Tsao and P. S. Peercy, “Crystallization Instability at the Amorphous-Silicon/Liquid-Silicon Interface”, Phys Rev Lett Vol. 58, Num 26, pp. 2782-2785, 1987.
[13] Hiroyuki Watanabe, Hirofumi Miki, Shigeru Sugai, Koji Kawasaki and Toshihide Kioka, “Crystallization Process of Polycrystalline Silicon” , Jpn. J. Appl. Phys. Vol. 33 ,pp. 4491-4498, 1994.
[14] James S. Im and H. J. Kim, Michael O. Thompson, “Phase Transformation Mechanisms Involved in Excimer Laser Crystallization of Amorphous Silicon Films”, Appl. Phys. Lett. Vol 63, pp 1969-1971, 1993.
[15] Mutsuko Hatano, Seungjae Moon, and Minghong Lee, Kenkichi Suzuki, Costas P. Grigoropoulos, “Excimer Laser-Induced Temperature Field in Melting and Resolidification
of Silicon Thin Films”, J. Appl. Phys. Vol. 87, pp 36-43, 2000.
[16] D.H Lowndes and R.F. Wood, “Studies of Pulsed Laser Melting and Rapid Solidification Using Amorphous Silicon”, Journal of Luminescence 30, pp 395-408, 1985.
[17] S. R. Stiffler and Michael O. Thompson and P. S. Peercy, “Supercooling and Nucleation of Silicon after Laser Melting”, Phys. Rev. Lett. Vol. 60, pp. 2519-2512, 1988.
[18] P. A. Stolk, A. Polman, and W. C. Sinke, “Experimental Test of Kinetic Theories for Heterogeneous Freezing in Silicon”, Phys. Rev. B. Vol. 47, pp 5-13, 1993.
[19] S. R. Stiffler, P. V. Evans and A. L. Greer, ‘Interfacial Transport Kinetics During The Solidification of Silicon’, Acta metal. Mater. Vol. 40, pp 1617-1622, 1992.
[20] Curtis F, Geraid, Patrick O. Wheatley, Applied Numerical Analysis, Third edition, pp 465-467, (Addison-Wesley publishing Company, 1984).
[21] Mills Anthony F, Heat Transfer, Second edition, pp 150-154, (Prentice Hall, 1999).
[22] Curtis F, Geraid, Patrick O. Wheatley, Applied Numerical
Analysis, Third edition, pp 99-106, (Addison-Wesley publishing Company, 1984).
[23] E. P. Donovan, F. Spaepen, and D. Turnbull, ‘Heat of Crystallization and Melting Point of Amorphous Silicon’, Appl. Phys. Lett. Vol. 42, pp 698-700, 1983.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top