跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 01:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳慧娟
研究生(外文):Hui-Chuan Chen
論文名稱:Photofrin®造成caspase-3的共價修飾作用並調節抗癌藥物所引發的細胞死亡
論文名稱(外文):Photofrin® induces covalent dimerization / trimerization of caspase-3 and modulates anticancer drug-triggered cell death
指導教授:余兆松
指導教授(外文):Jau-Song Yu
學位類別:碩士
校院名稱:長庚大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:56
中文關鍵詞:光動力療法細胞凋亡光顯劑
外文關鍵詞:Photofrincaspase-3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Photofrin® 是第一個用於光動力療法 (photodynamic therapy, PDT) 的光顯劑 (photosensitizer), 可用於治療癌症。本實驗室研究以Photofrin®進行的光動力療法過程中發現Photofrin®可以分佈在癌細胞內部不同的位置,而隨著分佈的位置不同,PDT所引發的細胞死亡型態與機制亦不相同。在研究的過程中發現到一個有趣的現象,不論照光與否,以Photofrin®處理人類細胞會產生可被anti-caspase-3抗體所辨識的高分子量的蛋白質。此高分子量的蛋白質會隨著Photofrin®處理的時間與劑量增加而增加;除了內生性的caspase-3,外送過量表現的caspase-3也可觀察到相同的現象。我們的實驗結果指出此高分子量的蛋白質是來自已存在細胞中的caspase-3經由共價鍵結的修飾作用所形成,而且極可能是兩個或三個caspase-3單體分子鍵結在一起。Photofrin®的前處理會抑制由抗癌藥物所引起之細胞凋亡的訊息傳導,例如caspase-3的活化、PARP的斷裂及PS的外翻,但細胞的存活度卻反而下降。我們推測這樣的修飾作用在細胞凋亡的過程中可能會影響caspase-3的活化,進而影響細胞死亡的機制。Caspase-3在細胞凋亡的訊息傳遞過程中扮演著極為重要的角色,而此種造成caspase-3的修飾作用尚未被報導過。基於我們的實驗結果認為此種caspase-3的修飾作用在細胞死亡的訊息傳遞過程中可能極為重要。
Photofrin® is the first generation photosensitizer for photodynamic therapy (PDT), which is approved for treatment of cancer and some other diseases. Previous work from our laboratory indicated that PDT with Photofrin® targeting to distinct subcellular site results in different death phenotypes of A431 cells (Hsieh et al., 2003). Following that study, we found that Photofrin® induced formation of the two high-molecular- weight (HMW) forms of caspase-3 in various human cell lines. Photofrin® induces the formation of two HMW forms of caspase-3 is dose- and time-dependent, and this modification could also be observed on ectopically expressed caspase-3. Our results showed that the Photofrin®—induced HMW forms of caspase-3 were resulted from dimerization or trimerization of caspase-3 monomer through covalent conjugation. Pretreatment of Photofrin® inhibited the apoptotic processes triggered by staurosporine and anti-cancer drugs taxol and etoposide, including the cleavage/activation of caspase-3, the cleavage of PARP, and PS externalization, suggesting that the modification of caspase-3 might affect the activity of caspase-3 in apoptotic cells. Because caspase-3 is the key executioners in apoptosis, and our findings reveal a novel mechanism for regulating caspase-3 functions in cells.
指導教授推薦書…………………………………………………………
口試委員會審定書………………………………………………………
授權書………………………………………………………...…………iii
誌謝……………………………………………………………...………iv
中文摘要………………………………………………………...……….v
Abstract…………………………………………………….…...………vi
Content……………………………………………………….………….vii
Introduction……………………………………………...……………….1
Meterials and methods……………………………………………………6
Results…………………………………………………………………...14
Discussions……………………………………………………………...23
References……………………………………………………………….27
Figures and Table………………………………………………………..31
Aisner,J. and Lee,E.J. (1991). Etoposide. Current and future status. Cancer 67, 215-219.
Alvarado-Kristensson,M., Melander,F., Leandersson,K., Ronnstrand,L., Wernstedt,C., and Andersson,T. (2004). p38-MAPK Signals Survival by Phosphorylation of Caspase-8 and Caspase-3 in Human Neutrophils. J. Exp. Med. 199, 449-458.
Boldin,M.P., Goncharov,T.M., Goltsev,Y.V., and Wallach,D. (1996). Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85, 803-815.
Cain,K., Brown,D.G., Langlais,C., and Cohen,G.M. (1999). Caspase activation involves the formation of the aposome, a large (approximately 700 kDa) caspase-activating complex. J. Biol. Chem. 274, 22686-22692.
Cardone,M.H., Roy,N., Stennicke,H.R., Salvesen,G.S., Franke,T.F., Stanbridge,E., Frisch,S., and Reed,J.C. (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318-1321.
Chang,H.Y. and Yang,X. (2000). Proteases for cell suicide: functions and regulation of caspases. Microbiol. Mol. Biol. Rev. 64, 821-846.
Dellinger,M. (1996). Apoptosis or necrosis following Photofrin photosensitization: influence of the incubation protocol. Photochem. Photobiol. 64, 182-187.
Henderson,B.W. and Dougherty,T.J. (1992). How does photodynamic therapy work? Photochem. Photobiol. 55, 145-157.
Holmes,F.A., Walters,R.S., Theriault,R.L., Forman,A.D., Newton,L.K., Raber,M.N., Buzdar,A.U., Frye,D.K., and Hortobagyi,G.N. (1991). Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer. J. Natl. Cancer Inst. 83, 1797-1805.
Hsieh,Y.J., Wu,C.C., Chang,C.J., and Yu,J.S. (2003). Subcellular localization of Photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: when plasma membranes are the main targets. J. Cell Physiol 194, 363-375.
Huang,H., Joazeiro,C.A., Bonfoco,E., Kamada,S., Leverson,J.D., and Hunter,T. (2000). The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J. Biol. Chem. 275, 26661-26664.
Johnson,D.H., Hainsworth,J.D., Hande,K.R., and Greco,F.A. (1991). Current status of etoposide in the management of small cell lung cancer. Cancer 67, 231-244.
Kaye,S.B. (1995). Docetaxel (Taxotere) in the treatment of solid tumors other than breast and lung cancer. Semin. Oncol. 22, 30-33.
Kessel,D. (2002). Relocalization of cationic porphyrins during photodynamic therapy. Photochem. Photobiol. Sci. 1, 837-840.
Kessel,D. and Luo,Y. (2001). Intracellular sites of photodamage as a factor in apoptotic cell death. J. of Porphyrins and Phthalocyanines. 5, 181-184.
Korbelik,M. (1996). Induction of tumor immunity by photodynamic therapy. J. Clin. Laser Med. Surg. 14, 329-334.
Lazebnik,Y.A., Kaufmann,S.H., Desnoyers,S., Poirier,G.G., and Earnshaw,W.C. (1994). Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346-347.
Levine,R.L. (2002). Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic. Biol. Med. 32, 790-796.
Levy,J.G. (1995). Photodynamic therapy. Trends Biotechnol. 13, 14-18.
Li,J., Billiar,T.R., Talanian,R.V., and Kim,Y.M. (1997). Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem. Biophys. Res. Commun. 240, 419-424.
Liu,X., Kim,C.N., Yang,J., Jemmerson,R., and Wang,X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157.
Mannick,J.B., Hausladen,A., Liu,L., Hess,D.T., Zeng,M., Miao,Q.X., Kane,L.S., Gow,A.J., and Stamler,J.S. (1999). Fas-induced caspase denitrosylation. Science 284, 651-654.
Meggio,F., Donella,D.A., Ruzzene,M., Brunati,A.M., Cesaro,L., Guerra,B., Meyer,T., Mett,H., Fabbro,D., Furet,P., and . (1995). Different susceptibility of protein kinases to staurosporine inhibition. Kinetic studies and molecular bases for the resistance of protein kinase CK2. Eur. J. Biochem. 234, 317-322.
Mittl,P.R., Di Marco,S., Krebs,J.F., Bai,X., Karanewsky,D.S., Priestle,J.P., Tomaselli,K.J., and Grutter,M.G. (1997). Structure of recombinant human CPP32 in complex with the tetrapeptide acetyl-Asp-Val-Ala-Asp fluoromethyl ketone. J. Biol. Chem. 272, 6539-6547.
Mohr,S., Zech,B., Lapetina,E.G., and Brune,B. (1997). Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide. Biochem. Biophys. Res. Commun. 238, 387-391.
Muzio,M., Chinnaiyan,A.M., Kischkel,F.C., O'Rourke,K., Shevchenko,A., Ni,J., Scaffidi,C., Bretz,J.D., Zhang,M., Gentz,R., Mann,M., Krammer,P.H., Peter,M.E., and Dixit,V.M. (1996). FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex. Cell 85, 817-827.
Orr,G.A., Verdier-Pinard,P., McDaid,H., and Horwitz,S.B. (2003). Mechanisms of Taxol resistance related to microtubules. Oncogene 22, 7280-7295.
Porn-Ares,M.I., Saido,T.C., Andersson,T., and Ares,M.P. (2003). Oxidized low-density lipoprotein induces calpain-dependent cell death and ubiquitination of caspase 3 in HMEC-1 endothelial cells. Biochem. J. 374, 403-411.
Rossig,L., Fichtlscherer,B., Breitschopf,K., Haendeler,J., Zeiher,A.M., Mulsch,A., and Dimmeler,S. (1999). Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J. Biol. Chem. 274, 6823-6826.
Ruegg,U.T. and Burgess,G.M. (1989). Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol. Sci. 10, 218-220.
Suzuki,Y., Nakabayashi,Y., and Takahashi,R. (2001). Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Natl. Acad. Sci. U. S. A 98, 8662-8667.
Thompson,C.B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456-1462.
Verhoven,B., Schlegel,R.A., and Williamson,P. (1995). Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J. Exp. Med. 182, 1597-1601.
Xue,L.Y., Chiu,S.M., and Oleinick,N.L. (2001). Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene 20, 3420-3427.
Yuan,J., Shaham,S., Ledoux,S., Ellis,H.M., and Horvitz,H.R. (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641-652.
Zou,H., Henzel,W.J., Liu,X., Lutschg,A., and Wang,X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405-413.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top