跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/11 23:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林建中
論文名稱:中藥對人體樹突狀細胞分化的影響
論文名稱(外文):The effect of hearbs on the differentiation of human dendritic cells
指導教授:陳光偉陳光偉引用關係
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:中西醫結合研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:樹突狀細胞中藥中藥免疫抗原呈現細胞
相關次數:
  • 被引用被引用:0
  • 點閱點閱:434
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
樹突狀細胞在體內或體外都有未成熟及成熟二個階段。未成熟樹突狀細胞的功能主要是抗原攫取的作用,成熟樹突狀細胞的功能則是抗原呈現作用。樹突狀細胞能夠調控免疫反應,主要取決於成熟樹突狀細胞的抗原呈現能力,如此才能引發T細胞調介的免疫反應及啟動初次主要的免疫反應。細菌全部或部分抗原、發炎性細胞激素、病毒雙股RNA、CD40-L等均證實可以誘導樹突狀細胞的成熟化。樹突狀細胞成熟化的研究及誘導是目前很重要的課題。樹突狀細胞雖是免疫的守門員,中藥對它的影響却很少被討論到。中醫學認為疾病發生與否取決於正氣,某個意義上講正氣相當於免疫力。
本實驗用十四種與氣血有關的中藥,來研究中藥對樹突狀細胞分化誘導的影響。材料是用monocyte-derived樹突狀細胞(MoDC),以細胞表面有樹突狀突起及CD40、CD86、HLA-DR、CD11c標誌做為MoDC的成熟指標。使用正常人MoDC及肺癌病人MoDC與十四種中藥共培養24小時。結果顯示本實驗使用的中藥對正常人的MoDC沒有促進成熟的作用,但是對肺癌病人MoDC高濃度(100μg/mL)的白朮、當歸、紫草3種中藥可促進其成熟分化。
目錄----------------------i
圖目錄-------------------ii
表目錄-------------------iv
中文摘要------------------v
第一章 前言 ------------1-4
第二章 文獻探討--------5-21
第三章 材料與方法-----22-27
第四章 結果-----------28-33
第五章 討論-----------34-37
第六章 結論-----------38-38
參考文獻---------------39-46
附錄-------------------47-54
英文摘要---------------55-56
1. Steinman RM: The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9: 271-296.
2. Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998;392:245-252.
3. Romani N, Gruner S., Brang D, Kämpgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G: Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 1994;180: 83-93.
4. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, Engleman EG, Levy R: Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996;2: 52-58.
5. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D: Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998;4: 328-332.
6. Caux C, Dezutter Dambuyant C, Schmitt D, Banchereau J: GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 1992;360:258-261.
7. Sallusto F, Lanzavecchia A: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994;179: 1109-1118.
8. Akagawa KS, Takasuka N, Nozaki Y, Komuro I. Azuma M, Ueda M, Naito M, Takahashi K: Generation of CD1+Re1B+ dendritic cells and tartrate-resistant acid phosphatase positive osteoclast-like multinucleated giant cells from human monocytes. Blood 1996;88: 4029-4039.
9. Kiertscher S, Roth M: Human CD 14+ leukocytes acquire the phenotype and function of antigen-presenting dendritic cells when cultured in GM-CSF and IL-4. J. Leuk. Biol. 1996;59: 208-218.
10. Pickl WF, Majdic O, Kohl P, Stöckl J, Riedl E, Scheinecker C, Bello-Fernandez C, Knapp W: Molecular and functional characteristics of dendritic cells generated from highly purified CD 14+ peripheral blood monocytes. J Immunol 1996;157: 2001-2011.
11. Zhou LJ, Tedder T: CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA 1996;93: 2588-2592.
12. Chapuis F, Ronsenzwajg M, Yagello M, Ekamn M, Biberfeld P, Gluckman JC: Differentiation of human dendritic cells from nonproliferating progenitors in human blood. Eur J Immunol 1997;27: 431.
13. Bender A, Sapp M, Schule, G, Steinman RM, Bhardwaj N: Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods 1996;196: 121-135.
14. Romani N, Reider D, Heuer M, Ebner S, Kämpgen E, Eibl B, Niederwieser D, Schuler G: Generation of mature dendritic cells from human blood: an improved method with special regard to clinical applicability. J Immunol Methods 1996;196: 137-151.
15. 賀新懷,席孝賢: 我國古代中醫免疫學思想與實踐 In中醫藥免疫學,人民軍醫出版社 北京, 2002;1-8
16. 賀新懷,席孝賢: 中醫學理論與免疫 In中醫藥免疫學. 人民軍醫出版社 北京 2002;9-43.
17. 賀新懷,席孝賢 中醫藥免疫學. 北京. 人民軍醫出版社 2002
18. Roitt I, Brostoff J, Male D: Introduction to the immune system. In: Roitt, I. et al., eds. Immunology. Philadelphia, PA: Mosby, 2001: 1-13.
19. Roitt I, Brostoff J, Male D: T-cell receptors and major histocompatibility complex molecules. In: Roitt, I. et al., eds. Immunology. Philadelphia, PA: Mosby, 2001: 87-104.
20. Mellman I: Dendritic cells: specialized and regulated antigen processing machines. Cell 2001;106: 256-258.
21. Hart DNJ: Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 1997;90: 3245-3287.
22. Thomas R, Lipsky PE: Human peripheral blood dendritic cell subsets. Isolation and characterisation of precursor and mature antigen-presenting cells. J Immunol 1994;153: 4016-4028.
23. Takamizawa M, Rivas A, Fagnoni F, Benike C, Kosek J, Hyakawa H, Engleman EG: Dendritic cells that process and present nominal antigens to naive T lymphocytes are derived from CD2+ precursors. J Immunol, 1997;158: 2134-2142.
24. Robinson SP, Davies D, English N, Patterson S, Knight SC, Reid CDL: Human peripheral blood contains two distinct lineages of dendritic cell. Eur J of Immunol, 1999;29: 2769-2778.
25. Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A, Colonna M: Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type 1 interferon. Nat Med 1999;5: 919-923.
26. Randolph GJ, Beaulieu S, Steinman RM, Muller WA: Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 1998;282: 480--483.
27. Palucka KA, Taquet N, Sanchez-Chapuis F, Gluckman JC: Dendritic cells as the terminal stage of monocyte differentiation. J Immunol 1998;160: 4587-4595.
28. Volc-Platzer B, Stingl G, Wolff K, Hinterberger W, Schnedl W: Cytogenetic identification of allogeneic epidermal Langerhans cells in a bone marrow-graft recipient. N Engl J Med 1984;310: 1123-1124.
29. Caux C, Vanbervliet B, Massacrier C, Dezutter-Dambuyant C, de Saint-Vis B, Jacquet C, Yoneda K., Imamura S., Schmitt D, Banchereau J: CD34+ haematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF + TNFα. J Exp Med 1996;184: 695-706.
30. Reid C, Fryer P, Clifford C, Kirk A, Tikerpae J, Knight S: Identification of hematopoietic progenitors of macrophages and dendritic Langerhans cells (DL-CFU) in human marrow and peripheral blood. Blood 1990;76: 1139-1149.
31. Reid C, Stackpoole A, Meager A., Tikerpace J: Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow. J Immunol 1992;149: 2681-2688.
32. Santiago-Schwarz F, Divaris N, Kay C, Carsons S: Mechanisms of tumor necrosis factor and granulocyte-macrophage colony-stimulating factorinduced dendritic cell development. Blood 1993;82: 3019-3028.
33. Strunk D, Rappersberger K, Egger C, Strobl H, Krömer E, Elbe A, Maurer D, Stingl G: Generation of human dendritic cells/Langerhans cells from circulating CD34+ hematopoietic progenitor cells. Blood 1996;87: 435-445.
34. Young J, Szabolcs P, Moore M: Identification of dendritic cell colony-forming units among normal human CD34+ bone marrow progenitors that are exprandend by c-kit-ligand and yield pure dendritic cell colonies in the presence of granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. J Exp Med 1995;182: 1111-1120.
35. Galy A, Travis M, Cen D, Chen B Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 1995;53: 459-473.
36. van Voorhis WC, Hair LS, Steinman RM, Kaplan G: Human dendritic cells. Enrichment and characterisation from peripheral blood. J Exper Med 1982;155: 1172-1187.
37. O''Doherty U, Peng M, Gezelter S, Gezelter S, Swiggard WJ, Betjes M, Bhardwaj N, Steinman RM: Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunol 1994; 82: 487-493.
38. Fearnley DB, McLellan AD, Mannering SI, Hock BD, Hart DN: Isolation of human blood dendritic cells using the CMRF-44 monoclonal antibody: implications for studies on antigen-presenting cell function and immunotherapy. Blood 1997;89: 3708-16.
39. Hock BD, Fearnley DB, Boyce A, McLellan AD, Sorg RV, Summers KL, Hart DN: Human dendritic cells express a 95 kDa activation/differentiation antigen defined by CMRF-56. Tissue Antigens 1999;53: 320-334.
40. Backx B, Broeder L, Bot FJ, Lowenberg B: Positive and negative effects of Tumor Necrosis Factor on colony growth from highly purified normal marrow progenitors. Leukemia 1991;5: 66-70.
41. Jacobsen SEW, Ruscetti FW, Dubois CM, Keller JR: Tumor necrosis factor a directly and indirectly regulates hematopoietic progenitor cell proliferation: role of colony-stimulating factor receptor modulation. J Exp Med 1992;175:1759-1772.
42. Szabolcs P, Moore MAS, Young JW: Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD341 bone marrow precursors cultured with c-kit-ligand, GM-CSF, and TNFa. J Immunol 1995;154:5851-5861.
43. Rosenzwajg M, Canque B, Gluckman JC: Human dendritic cell differentiation pathway from CD34+ hematopoietic precursor cells. Blood 1996;87: 535-544.
44. Siena S, Di Nicola M, Bregni M, Mortarini R, Anichini A, Lombardi L, Ravagnani F, Parmiani G, Gianni AM: Massive ex vivo generation of functional dendritic cells from mobilized CD34+ blood progenitors for anticancer therapy. Exp Hematol 1995;23: 1463-1471.
45. Strobl H, Bello-Fernandez C, Riedl E, Pickl WF, Majdic O, Lyman SD, Knapp W: Flt3 ligand in cooperation with transforming growth factor-beta l potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions. Blood 1997;90: 1425-1434.
46. Saraya K, Reid CD: Stem cell factor and the regulation of dendritic cell production from CD34+ progenitors in bone marrow and cord blood. Br J Haematol 1996;93: 258-264.
47. Caux C, Massacrier C, Dezutter-Dambuyant C,Vanbervliet B, Jacquet C, Schmitt D, Banchereau J: Human dendritic Langerhans cells generated in vitro from CD34+ progenitors can prime naive CD4+ T cells and process soluble antigen. J Immunol 1995;155: 5427-5435.
48. Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Aït-Yahia S, Brière F, Zlotnik A, Lebecque S, Caux C: Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 1998;188: 373-86.
49. Sallusto F, Lanzavecchia A, Mackay CR: Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today. 1998;19: 568-574.
50. Sozzani S, Allavena P, D''Amico G, Luini W, Bianchi G, Kataura M, Imai T, Yoshie O, Bonecchi R, Mantovani A: Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 1998;161: 1083-1086.
51. Reddy A, Sapp M, Feldman M, Subklewe M, Bhardwaj N: A monocyte conditioned medium is more effective than defined cytokines in mediating the terminal maturation of human dendritic cells. Blood 1997;90: 3640-3646.
52. Sallusto F, Cella M, Danieli C, and Lanzavecchia A: Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 1995;182: 389-400.
53. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K: Immunobiology of dendritic cells. Annu Rev Immunol 2000;18:, 767-811.
54. Palucka K, Banchereau J: Linking innate and adaptive immunity. Nat Med 1999;5: 868-870.
55. Cella M, EngeringA, Pinet V, Pieters J, Lanzavecchia A: Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 1997;388: 782-778.
56. de Saint-Vis B, Vincent J, Vandenabeele S, Vanbervliet B, Pin JJ, Aït-Yahia S, Patel S, Mattei MG, Banchereau J, Zurawski S, Davoust J, Caux C, Lebecque S: A novel lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment. Immunity 1998;9: 325-336.
57. Driessen C, Bryant RA, Lennon-Dumenil AM, Villadangos JA, Bryant PW, Shi GP, Chapman HA, Ploegh HL: Cathepsin S controls the trafficking and maturation of MHC class II molecules in dendritic cells. J Cell Biol 1999;147: 775-790.
58. Banchereau J, Bazan F, Blanchard D, Brière F, Galizzi JP, van Kooten C, Liu YJ, Rousset F, Saeland S: The CD40 antigen and its ligand. Ann Rev Immunol 1994;12: 881-922.
59. Biancone L, Cantaluppi V, Camussi G: CD40-CD154 interactions in experimental and human disease. Int J Mol Med 1999;3: 343-353.
60. Henriquez NV, Floettmann E, Salmon E, Rowe M, Rickinson AB: Differential responses to CD40 ligation among Burkitt lymphoma lines that are uniformly responsive to Epstein-Barr virus latent membrane protein 1. J Immunol 1999;162:3298-3307.
61. Tong AW, Seamour B, Chen J, Su D, Ordonez G., Frase L, Netto G, Stone MJ: CD40 ligand-induced apoptosis is Fas-independent in human multiple myeloma cells. Leuk Lymphoma 2000;36: 543-558.
62. Hirano A, Longo DL, Taub DD, Ferris DK, Young LS, Eliopoulos AG, Agathanggelou A, Cullen N, Macartney J, Fanslow WC, Murphy WJ Inhibition of human breast carcinoma growth by a soluble recombinant human CD40 ligand. Blood 1999;93: 2999-3007.
63. McLellan AD, Sorg RV, Fearnley DB, Hock BD, Tiedemann RJ, Fraser JD, Hart DN: T lymphocyte mediated regulation of costimulator molecule expression on human dendritic cells. Adv Exp Med Biol 1997;417:203-206.
64. Brossart P, Bevan MJ: Presentation of exogenous protein antigens on major histocompatibility complex class I molecules by dendritic cells: pathway of presentation and regulation by cytokines. Blood 1997;90: 1594-1599.
65. Albert ML, Sauter B, Bhardwaj N: Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392: 86-89.
66. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW: Gene expression profiles in normal and cancer cells. Science 1997;276: 1268-1272.
67. Gunzer M, Janich S, Barga G: Dendritic cells and tumor immunity. Seminars in Immunology 2001;13: 291-302.
68. Matzinger P. An innate sense of danger Semin Immunol. 1998;10: 399-415.
69. Janeway CA Jr: The immune system evolved to discriminate infectious nonself from noninfectious self Immunol Today 1992;13: 11-6.
70. Vose BM, Moore M: Human tumor-infiltrating lymphocytes: a marker of host response. Semin Hematol 1992;22: 27-40.
71. Svennevig JL, Lunde OC, Holter J, Bjørgsvik D: Lymphoid infiltration and prognosis in colorectal carcinoma. Br J Cancer 1984;49: 375-377.
72. Wolf GT, Hudson JL, Peterson KA, Miller HL, McClatchey KD: Lymphocyte subpopulations infiltrating squamous carcinomas of the head and neck: correlations with extent of tumor and prognosis. Otolaryngol Head Neck Surg 1986;95: 142-52.
73. Gabrilovich DI, Corak J., Ciernik IF, Kavanaugh D., Carbone DP: Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 1997;3: 483-490.
74. Almand B, Resser JR, Lindman B., Nadaf S; Clark JI, Kwon ED., Carbone DP, Gabrilovich DI: Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 2000; 6: 1755-1766.
75. Gabrilovich DI, Chen, HL, Girgis KR, Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996;2: 1096-103.
76. Nestle FO, Burg G, Fah J, Wrone-Smith T, Wrone-Smith T, Nickoloff BJ: Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells. Am J Pathol 1997;150: 641-651.
77. Hoffmann TK, Muller-Berghaus J, Ferris RL, Johnson JT, Storkus WJ, Whiteside TL: Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck. Clin Cancer Res 2002;8: 1787-1793.
78. Becker Y: Dendritic cell activity against primary tumors: an overview. In Vivo. 1993;7: 187-191.
79. Reichert TE, Scheuer C, Day R, Wagner W, Whiteside TL: The number of intratumoral dendritic cells and zeta-chain expression in T cells as prognostic and survival biomarkers in patients with oral carcinoma. Cancer 2001;91: 2136-2147.
80. 王本样: 現代中藥藥理學 天津科學技術出版社 天津 1995;349-1346.
81. 袁文學:人參根總皂苷的一些藥理作用 中國藥理學報 1983;4: 124。
82. 于永利:吉林人參花總皂苷對NKC-IFN-IL2調節網的作用及其抑瘤效廣 中國免疫學雜誌1987;3: 41。
83. 常春燕:黃芪促進NK細胞活性的研究 中國醫學科學院學報1983;5: 231。
84. 林炳水:中藥大棗對N-甲基-N-硝基-N-里硝基胍(MNNG)誘發大鼠胃腺癌抑制作用的初步觀察 天津醫學院學報1980;3: 12。
85. 孫喜才:白朮抑瘤機理的探討 陝西中醫1988;9: 283。
86. 高向東:五種抗衰老中藥對小鼠T淋巴細胞增殖與IL2產生的影響 中國藥科大學學報1990;21: 43。
87. 佐藤昭彥門:日本癌學會總會記事 第36回總會1977;10: 568。
88. Xia D: Effects of Ganoderma pdysaccharides or immune function in mice. J Beijing Med Univ1989;21: 533。
89. 耿長山:枸杞子多糖對小鼠白細胞介素-2活性的增強作用 中國藥理學與毒理學雜誌1989;3: 175。
90. 馬美芳:當歸多糖對造血細胞生成影響的實驗研究 中華血液雜誌 1988;9: 148。
91. 張泓:白芍總苷的免疫調節作用及機理 中國藥理學與毒理學雜誌1990;4: 190。
92. 魏錫云:黃芪和何首烏對老齡小鼠胸腺形態計量研究 中國藥科大學學報1991;22: 359。
93. 殷植彰:熟地具有免疫調節作用的成份F108對小鼠免疫細胞的作用華北、西北地區第三屆中藥天然物化學學術會議資料1988;106。
94. 張玉五:丹參抗癌機理初步觀察 西安醫科大學學報1986;7: 403。
95. 趙守先:紫草A的抗腫瘤實驗研究 吉林醫學1980;1: 7。
96. LiuY, Linsley PS: Costimulation of T-cell growth. Curr Opin Immunol 1992;4:265-270.
97. Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 1989;7: 445-480.
98. Kawaguchi M, Eckels DD: Differential activation through the TCR-CD3 complex affects the requirement for costimulation of human T cells. Hum Immunol 1995;43: 136-148.
99. Viola A, Lanzavecchia A: T cell activation determined by T cell receptor number and tunable thresholds. Science 1996;273: 104-106.
100. Verdijk RM, Mutis T, Esendam B: Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J Immunol 1999;163: 57-61.
101. Onishi H, Morisaki, T., Baba, E., Kuroki H., Matsumoto K., Tanaka M, Katano M: Dysfunctional and short-lived subsets in monocyte-derived dendritic cells from patients with advanced cancer. Clin Immunol 2002;105: 286-295.
102. McLellan AD, Sorg RV, Williams LA: Human dendritic cells activate T lymphocytes via a CD40: CD40 ligand-dependent pathway. Eur J Immunol 1996;26: 1204-1210.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top