(3.239.33.139) 您好!臺灣時間:2021/03/02 16:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林易玄
研究生(外文):Yi-Hsuan Lin
論文名稱:區域性大氣氣膠組成之時空變異特性研究
論文名稱(外文):Temporal and Spatial Variation in Chemical Composition of Ambient Aerosols the Regional Environment
指導教授:蔡瀛逸蔡瀛逸引用關係
指導教授(外文):Ying-I Tsai
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系暨研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:153
中文關鍵詞:微粒組成大氣氣膠
外文關鍵詞:PM2.5-10NORSORNRPM2.5
相關次數:
  • 被引用被引用:4
  • 點閱點閱:371
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究於2002年9月至2003年8月分別於高雄縣之大寮、林園、仁武以及美濃等地區,分別採集PM10與PM2.5之大氣懸浮微粒,探討全年大氣懸浮微粒區域變化與季節性之差異,密集採樣探討高污染季節期間(2002年10月至2003年3月)日夜以及不同空氣品質狀態大氣懸浮微粒之質量濃度變化與化學組成特性。
2002年9月至2003年8月PM2.5年平均質量濃度在大寮、仁武、林園以及美濃地區,分別為47.9±5.7 ?慊 m-3、43.9±7.4 ?慊 m-3、53.9±8.6 ?慊 m-3、44.6±6.2 ?慊 m-3,而PM2.5-10年平均濃度則分別為31.3±5.7 ?慊 m-3、29.4±4.7 ?慊 m-3、33.2±5.6 ?慊 m-3、24.1±2.9 ?慊 m-3,四個研究地點以林園地區質量濃度年平均值最高,年平均質量濃度最低為美濃地區。而四個研究地區其懸浮微粒組成以有機碳(Organic carbon, OC)、SO42-、NO3-、無機碳(Element carbon, EC)、NH4+為主,平均合佔PM2.5及PM2.5-10之36%~71%,此地區OC/EC皆在1.0以上,顯示此地區含碳氣膠以光化反應產生之二次氣膠為主。而金屬元素Al、K、Ca、Fe合佔PM2.5與PM2.5-10金屬平均濃度為1500~2000 ng m-3,PM2.5與PM2.5-10分別佔平均金屬濃度之70.9%、77.5%,顯示懸浮微粒當中之金屬元素以地殼元素貢獻最多。位於工業區如林園、大寮、仁武地區PM2.5中Pb、Zn平均濃度分別為109.1±116.4 ng m-3、261.8±215.5 ng m-3,較美濃地區PM2.5中Pb、Zn金屬平均濃度63.3±33.1 ng m-3、153.2±63.6 ng m-3高出釵h,顯示此三地區因工廠之作業如燃燒重油以及交通污染明顯導致懸浮微粒中之Pb、Zn濃度較高。林園地區因為位於沿海地區Sea salt佔PM2.5-10比例分別為5.9%,較仁武與大寮地區之PM2.5-10微粒平均比例為9.5%為高,而美濃地區Sea salt佔PM2.5-10分別為為6.7%,因位於內陸比例較低,此外於林園地區Sea salt於日間PM2.5-10平均比例為9%,較夜間PM2.5-10平均比例3%來的高,顯示海陸風的效益明顯。
採樣期間大部分的PM2.5-10氣膠多呈現中性,但在仁武地區PM2.5-10之NR值為0.7±0.1,屬偏酸性。在PM2.5之NR值較PM2.5-10為低,顯示SO42-、NO3-在細微粒貢獻量較粗微粒多。在高雄地區SOR與NOR表現,PM10氣膠微粒SOR及NOR平均轉化率分別為0.69?b0.13、0.23?b0.06。而在美濃地區SOR的轉換速率是其他三地點之2倍,不論何地其SO2轉化成硫酸鹽的轉化速率比NO2轉化成硝酸鹽的轉化速率為大,而靠近山區之美濃無明顯SO2污染排放,然而美濃之SOR較其他地區為高,顯示美濃地區之SO42-主要由遠處SO2排放及轉化傳輸而來。
於不同污染狀態下,於高污染事件發生時,平均混合層高度為832.3±422.4 m,較低導致污染物不易擴散,在良好空氣品質狀態下平均混合層高度為1487.6±662.2 m,高度較高能將污染物均勻擴散至大氣中,不致累積於同一區域。在高污染事件日PM2.5主要成份SO42-、NO3-、NH4+、OC與EC比一般空氣品質分別為1.5、1.9、1.7、1.6及1.6倍,顯示在高污染事件日NO3-、SO42-與OC都是主要污染物種。PM2.5-10分別為1.6、1.5、1.5、1.9及1.5倍,NO3-較其他主要成份有較多之增量,顯示高污染事件日發生時,產生之NO3-微粒污染物較多,不易擴散而滯留當地。
The long-term compared the temporal and spatial variations of PM10 and PM2.5 aerosol components at Daliau (DL), Jenwu (JW), Linyuan (LY) and Meinong (MN) in the southern Taiwan from September 2002 to August 2003. The whole sampling program included intensive studying the characteristics of daytime and nighttime aerosol during the seasons of particulate matter (PM) episodic occurrence from October to March and the aerosol characteristics of 24-hour sampling during the various air qualities.
The annual mean concentrations of PM2.5 (fine particle) were 47.9?b5.7 ?慊 m-3 at site DL, 43.9?b7.4 ?慊 m-3 at site JW, 53.9?b8.6 ?慊 m-3 at site LY and 44.6?b6.2 ?慊 m-3 at site MN, respectively. Meanwhile, the mass concentrations of PM2.5-10 (coarse particle) were lower than PM2.5 at all the four sites. The annual mean concentrations of coarse particle were 31.3?b5.7 ?慊 m-3 at site DL, 29.4?b4.7 ?慊 m-3 at site JW, 33.2?b5.6 ?慊 m-3 at site LY and 24.1?b2.9 ?慊 m-3 at site MN, respectively. The mass concentration of fine and coarse particles at site LY was the highest at all the four sites. The mass annual mean mass concentration of PM10 at site MN was the lowest. Among the detected 29 components, organic carbon (OC) was always the most abundant chemical component of PM10 at all the four sites, followed by sulfate, elemental carbon (EC), nitrate and ammonia. Those above major components together accounted for 36~71 % of mass concentration in fine and coarse particles. Mean ratio of OC/EC at all the four sites was over than 1, including the organic carbon in aerosol resulted from the photochemical activity was dominant.
Amount of Al, K, Ca, and Fe either in PM2.5 or in PM2.5-10 was measured 1500~2000 ng m-3, which accounted for 70.9% and 77.5% of total determined fine and coarse particle metals, individually, indicating the crustal matter was the dominant species in particulate metals, specially for coarse particle. Higher abundance of traffic indictors such as Zn (261.8?b215.5 ng m-3) and Pb (109.1?b116.4 ng m-3) in PM2.5 were observed at the industrial and heavily trafficked areas such as LY, JW and DL, compared with 153.2?b63.6 ng m-3 of Zn and 63.1?b33.1 ng m-3 at site MN, which was the country and lowly trafficked area, indicating the emission effect of motor vehicle and heavy-oil burning contributed to airborne environment at industrial and high-density traffic areas was evident in larger abundance of Zn and Pb.
Sea salt in PM2.5-10 at the coastal site, site LY, accounted for upper than 10.4 %, compared with 9.5 % of PM2.5-10 at sites JW and DL and 6.7 % of PM2.5-10 at site MN. Apparent discrepancy of amount of sea salt in PM2.5-10 at site LY and other inland sites was caused by decreasing with increasing distance from the coast to the inland. On the other hand, the higher amount of sea salt at coastal site LY in the coarse fraction during daytime occurred with 9% of PM2.5-10, compared with 3% of PM2.5-10 during nighttime. The result was caused by stronger air circulation between the coast and inland under the effect of daytime sea breezes.
Neutralization ratio (NR) judged the aerosol acidity. Except that PM2.5-10 at site JW presented acidic, the PM2.5-10 at other sites presented neutral even alkaline. Acidic degree of aerosol was enriched in the fine size fraction as compared with alkaline and neutralization in the coarse fraction, indicating the sulfate and nitrate contributed to fine particle more than coarse particle. On average, the sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) in PM10 at all four sites were 0.69?b0.13 and 0.23?b0.06, respectively. There was no significant SO2 pollution source at the MN region, but average SOR at site MN exceeded that value at other three sites by a factor of 2, indicating aerosol sulfate at site MN mainly came from the transport from long distance sources to the sampling site MN with the SO2 gas-to-particle photochemical conversion.
When the good air quality occurred, the average mixing height of 1487.6?b662.2m was higher than 832.3?b422.4m during the period of PM10 episode, indicating the higher mixing height conduced to disperse air pollutions better and dilute their concentration more significantly. The amounts of sulfate, nitrate, ammonia, OC and EC in PM2.5 increased by factors of 1.5, 1.9, 1.7, 1.6 and 1.6 (highest for nitrate), respectively, from during the period of moderate air quality to during PM10 episodic event. Although sulfate was generally more abundant than nitrate, they were quite comparable during PM10 episodic event. Compared to lower amounts of nitrate in PM2.5 during the period of moderate air quality, the amount of nitrate in PM2.5 increased significantly more than other chemical species in PM2.5 during PM10 episodic event. The reason of significantly increased aerosol nitrate during PM10 episode might cause by that nitrate gas-to-particle concentration increased and was difficult to disperse when lower mixing height occurred.
摘要 ……………………………………………………………….. I
Abstract ……………………………………………………………….. IV
誌謝 ……………………………………………………………….. VII
目錄 ……………………………………………………………….. IX
表目錄 ……………………………………………………………….. XIII
圖目錄 ……………………………………………………………….. XV
第一章 前言……………………………………………….…………. 1
1-1 研究緣起………………………………………….…………. 1
1-2 研究目標………………………………………….…………. 2
第二章 文獻回顧………………………………………….…………. 3
2-1 大氣氣膠微粒之來源、組成………………………….…….. 3
2-1-1 懸浮微粒之碳組成………………………………………….. 8
2-1-2 大氣懸浮微粒之金屬來源………………………………….. 9
2-2 大氣懸浮微粒之硫酸鹽與硝酸鹽轉化現象……………….. 13
2-3 懸浮微粒之酸鹼值………………………………………….. 15
2-4 軌跡模式的運用…………………………….………………. 17
第三章 採樣地點與研究方法…………………………….…….….... 20
3-1 地理概況及區域特色…………………………………….…. 20
3-1-1 位置及土地使用情形……………………..…………….…... 20
3-1-2 氣候……………………………………………………..….... 21
3-2 大氣懸浮微粒採樣………………………………….….….... 21
3-2-1 例行採樣與密集採樣時間表……………….…………...….. 23
3-2-2 採樣地點描述……………………………………….…..…... 24
3-2-3 大氣懸浮微粒採樣儀器及採樣器規範……...………..……. 25
3-3 大氣懸浮微粒分析方法…………………………………….. 31
3-3-1 大氣微粒水溶性離子成份………………….…….…..….…. 31
3-3-2 大氣微粒碳含量分析…..….……………….…………….…. 32
3-3-3 大氣微粒重金屬分析………………………………...…..…. 34
3-4 實驗數據品質管制/保證……...……………………...…..…. 35
3-5 硫轉化率與氮轉化率………………………………...…..…. 40
3-6 大氣氣膠微粒之酸鹼性……….……………………………. 41
3-7 軌跡線模擬混合層高及穩定度…………………………….. 41
第四章 高雄地區大氣懸浮微粒時空分佈………………………….. 44
4-1 高雄地區各採樣點之大氣懸浮微粒質量濃度….….……… 44
4-1-1 全年PM10與EPA之數據比較….………………..………… 44
4-1-2 PM2.5和PM2.5-10之月平均質量濃度比較…………..……… 45
4-1-3 四季PM2.5、PM2.5-10懸浮微粒質量濃度區域特徵………..… 50
4-1-4 PM2.5、PM2.5-10、PM10與空氣品質監測站PM10質量濃度相
關性………………………………………………………….. 54
4-2 PM2.5、PM2.5-10懸浮微粒組成探討………………………….. 66
4-2-1 大寮地區四季懸浮微粒組成……………………………….. 66
4-2-2 仁武地區四季懸浮微粒組成……………………………….. 68
4-2-3 林園地區四季懸浮微粒組成……………………………….. 73
4-2-4 林園地區四季懸浮微粒組成……………………………….. 76
4-3 高雄地區大氣氣膠微粒之酸鹼值四季比較……………….. 83
4-3-1 高雄地區PM2.5大氣氣膠微粒之酸鹼性………………….. 83
4-3-2 高雄地區PM2.5-10大氣氣膠微粒之酸鹼性…………………. 83
4-4 高雄地區硫轉化率與氮轉化率之比較…………………….. 84
4-5 高雄地區四季大氣氣膠懸浮微粒金屬組成變化………….. 85
4-5-1 高雄地區四季PM2.5大氣懸浮微粒金屬組成變化………… 85
4-5-2 高雄地區四季PM2.5-10大氣懸浮微粒金屬組成變化………. 93
第五章 高雄地區高污染時期大氣懸浮微粒分佈與特性………….. 100
5-1 高雄地區密集採樣之大氣懸浮微粒質量濃度…………….. 100
5-1-1 高雄地區日夜大氣懸浮微粒質量濃度…………………….. 100
5-1-2 高雄地區懸浮微粒粒徑分佈……………………………….. 104
5-1-3 軌跡模擬案例研究………………………………………….. 110
5-2 PM2.5與PM2.5-10日夜懸浮微粒組成探討…………………… 115
5-2-1 大寮地區日夜懸浮微粒組成……………………………….. 115
5-2-2 仁武地區地區日夜懸浮微粒組成………………………….. 117
5-2-3 林園地區日夜懸浮微粒組成……………………………….. 118
5-2-4 美濃地區日夜懸浮微粒組成……………………………….. 120
5-3 高雄地區高污染事件日大氣氣膠微粒特性……………….. 122
5-3-1 高雄地區不同污染事件日大氣氣膠微粒質量濃度……..… 122
5-3-2 高雄地區不同污染狀態大氣懸浮微粒組成……………….. 123
5-3-3 高雄地區不同污染狀態下大氣氣膠微粒之酸鹼性……….. 129
5-3-4 高雄地區不同污染狀態下硫轉化率和氮轉化率………….. 130
5-3-5 高雄地區不同污染狀態大氣懸浮微粒金屬組成………….. 134
5-3-5-1 高雄地區不同污染狀態PM2.5大氣懸浮微粒金屬組成…… 134
5-3-5-2 高雄地區不同污染狀態PM2.5-10大氣懸浮微粒金屬組成…. 135
第六章 結論與建議………………………………………………….. 139
6-1 結論………………………………………………………….. 139
6-2 建議………………………………………………………….. 142
第七章 參考文獻…………………………………………………….. 144
1.Bourque, C.P.A. and P.A. Arp, “Simulating Sulfur Dioxide Plume Dispersion and Subsequent Deposition Downwind from a Stationary Point Source: A Model.” Environ. Pollut., Vol. 91, pp.363-380 (1996).
2.Cheng, M.T. and Y.I. Tsai, “Characterization of Visibility and Atmospheric Aerosols in Urban, Suburban, and Remote Areas,” the Science of the Total Environment, Vol. 231, pp. 37-51 (2000).
3.Chow, J.C., J.G. Watson, E.M. Fujuta, Z. Lu and D.R. Lawson, “Temporal and Spatial Variations of PM2.5 and PM10 Aerosol in the Southern California Air Quality Study,” Atmospheric Environment, Vol. 28, No.12, pp. 2061-2080 (1994).
4.Chow, J.C., J.G. Watson, Z. Lu, D.H. Lowenthal, C.A. Frazier, P.A. Solomon, R.H. Thuillier and K. Magliano, “Descriptive Analysis of PM2.5 and PM10 at Regionally Representative Locations During SJVAQS/AUSPEX,” Atmos. Environ., Vol. 30, No. 12, pp. 2079-2112 (1995).
5.Colbeck, I. and R. M. Harrison, “Ozone-Secondary Aerosol-Visibility Relationships in North-West England,” the Science of the Total Environment, Vol. 34, pp. 87-100 (1984).
6.Eldred, R.A., T.A. Cahill and R.G. Flochini, “Composition of PM2.5 and PM10 Aerosols in the IMPROVE Network,” Journal of Air Waste Management Association, Vol. 47, pp. 194-203 (1997).
7.Fang, G.C., C.N. Chang, C.C. Chu, Y.S. Wu, P.P.C Fu, I.. Yang and M.H. Chen, “Characterization of particulate, metallic elements of TSP, PM2.5 and PM10 aerosols at a farm sampling site in Taiwan, Taichung,” the Science of the Total Environment, Vol. 308, pp. 157-166 (2003).
8.Gehrig, R. and B. Buchmann, “Characterizing seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data,” Atmospheric Environment, Vol. 37, pp. 2571-2580 (2003).
9.Grosjean, D., “In-situ organic aerosol formation during a smog episode,” Atmospheric Environment, 26A, pp. 953-963 (1992).
10.Holzworth, G.C, “Mixing heights, wind speeds and potential for urban air pollution through contiguous United States,” AP-101, U.S. EPA, Raleigh, NC (1972).
11.James, P.S., V.I. Raveendra and E.F. Timothy, “Multivariate Statistical Examination of Spatial and Temporal Patters of Heavy Metal Contamination in New Bedford Harbor Marine Sediment,” Environment Science Technology, Vol. 29, pp. 1781-1788 (1995).
12.Kato, S., P. Pochanart, J. Hirokawa, Y. Kajii, H. Akimoto, Y. Ozaki, K. Obi, T. Katsuno, D. G.Streets and N.P. Monko, “The influence of Siberian forest fires on carbon monoxide concentrations at Happo, Japan.” Atmospheric Environment, Vol. 36, pp.385-390 (2002).
13.Larson, S. M., G.. R. Cass and H. A. Gray, “Atmospheric Carbon Particles and the Los Angeles Visibility Problem,” Aerosol Science and Technology, Vol. 10, pp. 118-130 (1989).
14.Lelieveld, L., P.J. Crutzen, V. Ramanathan, M.O. Andreae, C.A.M. Brenninkmeijer, T. Campos, G.R. Cass, R.R Dickerson., H. Fischer, J.A. de Gouw, A. Hansel, A. Jeffersn, D. Kley, A.T.J. de Laat, S. Lal, M.G. Lawrence, J.M. Lobert, O.L. Mayol-Bracero, A.P. Mitra, T. Novakov, S.J. Otlmans, K.A. Prather, T. Reiner, H. Rodhe, H.A. Scheeren, D. Sikka and J. Williams, ”The Indian Ocean experiment: widespread air pollution from south and southeast Asia,” Science 291, pp. 1031-1036 (2001).
15.Lin, J.J. and H.S. Tai, ”Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung City, Taiwan,” Atmospheric Environment, Vol. 35, pp. 2627-2636 (2001).
16.Lin, J.J., “Characterization of the Major Chemical Species in PM2.5 in the Kaohsiung City, Taiwan,” Atmospheric Environment, Vol. 36, pp. 1911-1920 (2002).
17.Lundgren, D.A. and R.MM. Burton, “Effect of Particle Size Distribution on the Cut Point Between Fine and Coarse Ambient Mass Fractions,” Inhalation Toxicology, Vol. 7, pp. 131-148 (1995).
18.Marcazzan, G.M., S. Vaccaro, G. Valli and R. Vecchi, “Characterization of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy),” Atmospheric Environment, Vol. 35, pp. 4639-4650 (2001).
19.Moya, M., T. Castro, M. Zepeda and A. Baez, “Characterization of size-differentiated inorganic composition of aerosols in Mexico City,” Atmospheric Environment, Vol. 37, pp. 3581-3591 (2003).
20.Nicole, A.H.J., F.M. Dimphe, V.D.J. Katinka, H. Hendrik and H. Gerard, “Mass Concentration and Elemental Composition of Airborne Particulate Matter at Street and Background Locations,” Atmospheric Environment, Vol. 31, pp. 1185-1193 (1997).
21.Novakov, T., M.O. Andreae, R. Gabriel, T.W. Kirchstetter, O.L. Mayol-Bracero and V. Ramanathan, ”Origin of carbonaceous aerosols over the tropical Indian Ocean:biomass burning or fossil fuels,” Geophysical Research Letters 27, pp. 4061-4064 (2000).
22.Ohta, S. and T. Okita, “A Chemical Characterization of Atmospheric Aerosol in Sapporo,” Atmospheric Environment, Vol. 24A, No. 4, pp. 815-822 (1990).
23.Olmez, I., “Instrumental Neutron Activation Analysis of Atmospheric Particulate Matter,” Methods of Air Sampling and Analysis, pp. 143-150 (1989).
24.Pacyna, J.M., “Atmospheric Trace Elements from Natural and Anthropogenic Sources,” in Nriagu, J.O. and Davidson, C.I. (eds):Toxic Metals in the Atmosphere, Wiley, New York, (1986).
25.Pandis, S.N., R.A. Harlay, G..R. Cass and J.H. Seinfeld, “Secondary organic aerosol formation and transport” Atmospheric Environment, Vol. 26A, pp.2269-2282 (1992).
26.Rogge, W.F., L.M. Hildemann, M.A. Mazurek and G.R. Cass, “Sources of Fine Organic Aerosol. 3. Road Dust , Tire Dedris, and Organomentallic Brake Lining Dust:Roads as Sources and Sinks,” Environment Science Technology, Vol. 27, pp. 1892-1904 (1993).
27.Salama, A., H. Bauera, K. Kassina, S.M. Ullahb and H. Puxbauma, “Aerosol Chemical Characteristics of a Mega-city in Southeast Asia (Dhaka–Bangladesh),” Atmospheric Environment, Vol. 37, pp. 2517-2528 (2003).
28.Scire, J.S., F.R. Robe, M.E. Fernau and R.J. Yamartino, ”A user’s guide for the CALMET meteorological model (version 5)(2000).
29.Seigneur, C. and A.Wu, “Quantitative assessment of the formation. In Transactions, PM10 Standards and Nontraditional Particulate Source Controls (edited by Chow J.C. and Ono D.M.),” Air and Waste Management Association, Pittsburgh, pp. 794-806 (1992).
30.Seinfeld, J.H. and S.N. Pandis, “Atmospheric Chemistry and Physic of Air Pollution,” John Wiley & Sons, Inc., New York, (1998).
31.Singh, N., V. Pandey, J. Misra, M. Yunus and K.J. Ahmad, “Atmospheric Lead Pollution from Vehicular Emissions – Measurements in Plants, Soil, and Milk Samples,” Environmental Monitoring & Assessment, Vol. 45, pp. 9-19 (1997).
32.Solomon, P.A. and J.L. Moyers, “Use of a High Volume Dichotomous Virtual Impactor to Estimate Light Extinction due to Carbon and Related Species in the Phoenix Haze,” the Science of the Total Environment, Vol. 36, pp. 169-175 (1984).
33.Stohl, A., “Computation, accuracy and applications of trajectories-a review and bibliography,” Atmospheric Environment, Vol. 32, pp. 947-966 (1998).
34.Trupin, B.J., J.J. Huntzicker, S.M. Larson and G.R. Cass, “Los Angels Summer Midday Particulate Carbon:Primary and Secondary Aerosol,” Environmental Science & Technology, Vol. 25, NO.10, pp. 1788-1793 (1991).
35.Tsai, Y.I. and M.T. Cheng, “Visibility and Aerosol Chemical Compositions near the Coastal Area in Central Taiwan,” the Science of the Total Environment, Vol. 231, pp. 37-51 (1999).
36.Tsai, Y.I., Y.H. Lin and S.Z. LEE, “Visibility Variation with Air Qualities in the Metropolitan Area in Southern Taiwan,” Water, Air, and Soil Pollution, Vol. 144, pp. 19-40 (2003).
37.Tsuang, B.J. and C.Y. Tu, “Model structure and land parameter identification: an inverse problem approach. J. Geophys. Res. – Atmospheres, 107 (D10), 10.1029/2001JD000711, ACL 15-1:13 (2002).
38.USEPA, “Evaluation and Estimation of Potential Carcinogenic Risk of Polynuclear Aromatic Hydrocarbons; Carcinogen Assessment Group, Office of Health and Environment Assessment,” Office of Research and Development. Washington, DC, (1985).
39.Vega, E., V. Mugica, E. Reyes, G. Sánchez, J.C. Chow and J.G. Watson, “Chemical composition of fugitive dust emitters in Mexico City,” Atmospheric Environment, Vol. 35, pp. 4033-4039 (2001).
40.Wang, G., L. Huang, S. Gao and L. Wang, “Characterization of water-soluble species of PM10 and PM2.5 aerosols in urban area in Nanjing, China,” Atmospheric Environment, Vol. 36, pp. 1299-1307 (2002).
41.Watson, J.G., J.C. Chow, Z. Lu, E.M. Fujita, D.H. Lowenthal and D.R. Lawson, “Chemical Mass Balance Source Apportionment of PM10 During the Southern California Air Quality Study,” Aerosol Science and Technology, Vol. 21, pp. 1-36 (1994).
42.Wei, F., E. Teng, G. Wu, W. Hu, W.E. Wilson, R.S. Chapmam, J.C. Pau and J. Zhong, “Ambient Concentrations and Elemental Compositions of PM10 and PM2.5 in Four Chinese Cities,” Environment Science Technology, Vol. 33, pp. 4188-4193 (1999).
43.Whitby, K. T. and B. Cantrell, “Fine Particles,” in International Conference on Environmental Sensing and Assessment, Las Vegas, NV, Institute of Electrical and Electronic Engineers (1976).
44.Yatin, M., S. Tuncel, N. K.Aras, I. Olmez and S. Aygun, “Atmospheric Trace Element in Ankara, Turkey:1. Factors Affecting Chemical Composition of Fine Particle,” Atmospheric Environment, Vol. 34, pp. 1305-1318 (2000).
45.王弼正、李崇德、陳鏡廉,「大台北地區PM2.5細微粒氣膠污染來源推估」,第14屆空氣污染控制技術研討會,1997。
46.吳怡芝、郭倍甄、釩翹搳B郭崇義,「大甲、后里、太平三地區粗細懸浮微粒組成份變化之探討」,氣膠科技研討會,2003。
47.吳承翰、林能暉、彭啟明,「大陸沙塵暴之長程傳送-氣流軌跡與物化特性探討」,第二屆全國大氣科學研究生學術研討會論文集,pp. 36-39,2001。
48.吳國榮、王聖翔、彭啟明、林能暉,「台灣局部大氣環流對生質燃燒氣膠擴散之影響探討」,氣膠科技研討會,2003。
49.李俊德、尤鴻昌、李文智,「鍋爐煙道廢氣重金屬之排放特徵」,International Conference on Aerosol Technology/Environmental Measurement and Control,台南,1997。
50.杜佳穎,「氣溫模式之發展與驗證」,國立中興大學環境工程研究所,碩士論文,台中,1999。
51.林銳敏、蔡俊鴻、江鴻龍、林允涵、張凱倫,「二次氣膠粒徑分佈變異特性研究」,氣膠科技研討會,2003。
52.袁中新、張瑞正、袁菁、楊宏宇、林文印、李崇垓、李崇德,「能見度與懸浮微粒物化特徵之相關性探討」,氣膠科技研討會,1999。
53.張能復等,「南高屏地區空氣污染總量管制規劃報告」,行政院環境保護署研究報告,EPA-89-FA11-03-0012,2000。
54.莊秉潔、言午家璋、陳建隆,「懸浮微粒濃度與微氣象因子之關係探討-台北案例研究」,第十八屆空氣污染控制技術研討會,2001。
55.郭育良等,「職業病概論」,華杏出版股份有限公司,1998。
56.郭奕伶、吳義林,「高屏地區衍生性硝酸鹽與硫酸鹽之形成速率」,第十三屆空氣污染控制技術研討會,pp. 81-88,1996。
57.郭素卿,「南台灣大氣氣膠酸鹼特性及含水率之時空變異研究」,嘉南藥理科技大學環境工程衛生系碩士論文,台南,2003。
58.陳律言、吳昭美、林文印、陳志傑、鄭福田,「南高屏地區大氣氣膠受空品區內輸送及當地因子貢獻量之模擬探討」,氣膠科技研討會,pp. 98-103,1999。
59.黃美倫,「中部空品區大氣氣膠中水溶性離子微粒之特性探討」,國立中興大學環境工程學研究所碩士論文,台中,2001。
60.黃譯樘、言午世傑、言午茹婷、陳韻文,「台北地區2002年PM10及PM2.5中金屬元素的化學特性」,氣膠科技研討會,2003。
61.楊宏隆,「大氣懸浮微粒PM2.5及PM10之特性來源分析」,國立中興大學環境工程學系碩士論文,台中,1998。
62.楊奇儒,「積塵在捲揚作用對地面附近大氣粒狀物濃度之影響」,國立成?大學環境工程學系碩士論文,台南,1994。
63.詹俊南,「台灣地區PM10污染特性分析」,國立台灣大學環境工程研究所碩士論文,台北,1996。
64.樓中基、袁中新,「台灣地區懸浮微粒空氣污染問題及防治之研究」,行政院環保署研究報告,1995。
65.蔣本基,「台北地區交通污染與營建工程對空氣品質影響之研究及受體模式之建立」,行政院環保署,台大環境工程報告,No.222,1989。
66.蔡祈政,「污染事件日大氣中PM10成份探討」,國立屏東科技大學環境工程研究所碩士論文,屏東,2000。
67.蔡清彥、柯文雄、吳清吉、葉偉文、沈保良、于蓓,「核能二廠大氣擴散追蹤實驗與模式改進」,台灣電力公司計畫報告,1991。
68.蔡德明、吳義林、陳冠志,「南高屏地區懸浮微粒分布特徵與來源之研究」,氣膠科技研討會,pp. 311-317,1998。
69.蔡瀛逸,「大氣懸浮微粒中鉛元素之研究」,國立中興大學環境工程研究所碩士論文,台中,1993。
70.蔡耀州,「台南市大氣中懸浮微粒及鹽類特性分析研究」,國立高雄第一科技大學環境工與安全衛生工程所碩士論文,高雄,2003。
71.謝徨麒,「固定污染源排放金屬元素之特徵」,國立成奶j學環境工程學系碩士論文,台南,2001。
72.鍾進忠,「屏東地區大氣PM10成份特性探討」,國立屏東科技大學環境工程研究所碩士論文,屏東,2000。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張鈿富(民90)。OECD國際性學生評量之探討。教育研究,83,28-43。
2. 張淑美(民83)。不同地區教育機會差異之探討。高雄師大學報,5,87-111。
3. 孫志麟(民83)。台灣地區各縣市國民小學教育資源分配之比較,教育與心理研究,7(17), 175-202。
4. 柯華葳(民88)。閱讀理解困難篩選測驗。中國測驗學會測驗年刊,46輯,2期,1-11頁。
5. 邱靜娟(民82)。從社會心理學觀點看教師期望與國中生學業成就之關係。教育資料文摘,183,121-134。
6. 林義男(民82)。國小學生家庭社經背景、父母參與與學業成就的關係。輔導學報,16,157-212。
7. 林天祐(民90)。提高兒童閱讀興趣的策略—美國加州聖塔芭芭拉市的經驗。教育資料與研究,38,12-15。
8. 高蓮雲(民81)。國小學童運用圖書館及課外閱讀實況之研究。臺北市立師範學院學報,23期,189-234。
9. 郭生玉(民64)。父母期望水準不切實際十對子女成就動機之影響。教育心理學報,8,61-80。
10. 郭靜姿(民82)。閱讀理解訓練方案對於增進閱讀策略運用與後設認知能力之成效研究。教育研究資訊,1(5),26—50。
11. 馮秋萍(民87)。兒童閱讀行為之探討。圖書與資訊學刊,25,63-72頁。
12. 陳建志(民89)。臺灣地區科系、職業性別隔離與收入性別差異之變遷。教育與心理研究,21,285-312。
13. 楊瑩(民83)。台灣地區不同家庭背景子女受教機會差異之研究。教育研究資訊,2(3),1-22。
14. 曾志朗(民89)。閱讀是多元智慧成功的基本條件。教師天地,106,4-5頁。
15. 黃德祥、魏麗敏(民90)。國中與高中學生家庭環境、學習投入狀況與自我調節學習及成就之研究。中華輔導學報,10,63-118。
 
系統版面圖檔 系統版面圖檔