跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 01:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳怡睿
研究生(外文):Yi-Juai Chen
論文名稱:二甲基苯駢蒽誘發倉鼠頰囊袋癌化過程中明膠酶的系列性變化
論文名稱(外文):Sequential Gelatinases Alteration in 9,10-dimethyl-1,2-benz[a]anthracene Induced Hamster Cheek Pouch Carcinogenesis
指導教授:周明勇周明勇引用關係
指導教授(外文):Ming-Yung Chou
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:口腔醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:106
中文關鍵詞:基質金屬蛋白酶二甲基苯駢蒽敘利亞倉鼠口腔頰囊袋免疫組織化學染色法明膠酶
外文關鍵詞:Matrix metalloproteinaseDMBAHamster cheek pouch modelImmunohistochemistryGelatin zymography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
基質金屬蛋白酶(matrix metalloproteinases,簡稱MMPs)在腫瘤的侵襲和轉移方面扮演著重要的角色,他們可以分解細胞外基質和基底膜,使癌細胞得以滲入血管或組織中。MMPs中的明膠酶(gelatinases),包括MMP-2與MMP-9,其主要作用是降解基底膜中的type IV膠原蛋白,在基底膜的破壞過程中扮演著重要角色,與癌症的侵犯及轉移關係密切。近年來的研究也陸續發現在口腔癌中MMP-2與MMP-9的表達扮演著舉足輕重的角色。然而,對於明膠酶在口腔癌癌化過程中的系列性變化還沒有完整的研究。因此,本實驗的目的是利用以二甲基苯駢蒽(9,10-dimethyl-1,2-benz[a]anthracene,簡稱DMBA)誘發的敘利亞倉鼠頰囊袋表皮樣癌模型(Syrian hamster cheek pouch model)來探討,在口腔癌癌化的過程中,MMP-2與MMP-9隨著時間的改變所產生的系列性變化。本實驗共用三十五隻敘利亞倉鼠,七隻為一組,分別在塗抹實驗的四、六、八、十、十二週犧牲,分別施以蘇木精與嗜伊紅染色(Hematoxylin-Eosin stain,簡稱H&E染色)與MMP免疫組織化學染色(immunohistochemistry stain,簡稱IHC染色),以光學顯微鏡觀察,此外,取頰囊袋的組織進行明膠酶譜(gelatin zymography)觀察,並經AlphaImager 2000 densitometer定量後以簡單線性迴歸(simple linear regression)分析。實驗結果顯示,MMP-2在上皮細胞的基底細胞層(basal layer)與棘皮層(stratum spinosum)有表達;而MMP-9則在上皮細胞的基底細胞層、棘皮層以及顆粒層(stratum granulosum)有表達。明膠酶譜的結果,則顯示MMP-2及MMP-9的表達有隨時間增強的趨勢。進一步以統計方法分析發現,MMP-2和MMP-9表達的程度和塗抹實驗的時間呈正相關(p<0.05)。綜合本實驗的結果,敘利亞倉鼠口腔頰囊袋表皮樣癌模型可說是觀察口腔癌癌化過程系列性變化的良好模型,而明膠酶在口腔癌癌化過程的系列性變化中隨時間變化而增強的表達,則可能是口腔癌變化的良好指標。

Objective: The matrix metalloproteinases (MMPs) are produced by the cancer cells or through induction of surrounding stromal cells. The ability of gelatinase (MMP-2 and MMP-9) to degrade basement membrane type IV collagen appears especially important in cancer progression. However, the sequential alteration of gelatinases in oral carcinogenesis has not yet been well demonstrated. The aim of this study was to investigate the sequential gelatinases alteration in 9,10-dimethyl-1,2-benz[a]anthracene (DMBA)-induced hamster cheek pouch model. Methods: Thirty-five out-bred, young (7 weeks old), male Syrian golden hamsters were randomly divided into 5 experimental groups (week 4, 6, 8, 10, and 12 DMBA treated groups; each with 5 animals) and two control groups (5 animals each). The pouches of each experimental group were bilaterally painted with a 0.5% DMBA solution three times a week. Each animal of one control group was similarly treated with mineral oil only, while the other control group remained untreated throughout the experiment. All pouches were studied both grossly and histologically. Tissues from each group were used to evaluate MMP-2 and MMP-9 activities by gelatin zymography. Results: The main gelatinase secreted by hamster cheek pouch migrated at 72/92 kDa and represented MMP-2/MMP-9. The values of gelatinase activity were found increased in a time-dependent manner (p<0.05). From the AlphaImager 2000 densitometer, the amount of MMP-2/MMP-9 was about 1.4/1.0 fold on week 4 (hyperkeratosis), 1.6/1.0 fold on week 6 (hyperkeratosis and dysplasia), 1.7/1.8 fold on week 8 (verrucous hyperplasia and dysplasia), 2.0/6.1 fold on week 10 (para-hyperkeratosis and dysplasia), and 3.7/3.0 fold on week 12 (carcinoma) compared with control, respectively. Conclusion: These results demonstrate that the up-regulation of gelatinases expression in DMBA-induced oral carcinogenesis, suggesting that gelatinases may play an important role in the pathogenesis of oral cancer.

目錄••••••••••••••••••••••••••••••••••••••••••••••••••••••1
圖目錄••••••••••••••••••••••••••••••••••••••••••••••••••••2
壹、中文摘要•••••••••••••••••••••••••••••••••••••••••••••••4
貳、英文摘要•••••••••••••••••••••••••••••••••••••••••••••••6
參、文獻回顧•••••••••••••••••••••••••••••••••••••••••••••••8
肆、研究目的••••••••••••••••••••••••••••••••••••••••••••••31
伍、實驗材料與研究方法••••••••••••••••••••••••••••••••••••32
陸、實驗結果••••••••••••••••••••••••••••••••••••••••••••••49
柒、討論••••••••••••••••••••••••••••••••••••••••••••••••••57
捌、參考文獻••••••••••••••••••••••••••••••••••••••••••••••61
玖、圖片••••••••••••••••••••••••••••••••••••••••••••••••••78
圖目錄
圖一 正常倉鼠頰囊袋外觀••••••••••••••••••••••••••••••••••78
圖二 塗抹DMBA四週倉鼠頰囊袋外觀•••••••••••••••••••••••79
圖三 塗抹DMBA六週倉鼠頰囊袋外觀•••••••••••••••••••••••80
圖四 塗抹DMBA八週倉鼠頰囊袋外觀•••••••••••••••••••••••81
圖五 塗抹DMBA十週倉鼠頰囊袋外觀•••••••••••••••••••••••82
圖六 塗抹DMBA十二週倉鼠頰囊袋外觀•••••••••••••••••••••83
圖七 正常倉鼠頰囊袋H&E染色(200倍率) ••••••••••••••••••••84
圖八 塗抹DMBA四週倉鼠頰囊袋H&E染色(200倍率) ••••••••••85
圖九 塗抹DMBA六週倉鼠頰囊袋H&E染色(200倍率) ••••••••••86
圖十 塗抹DMBA八週倉鼠頰囊袋H&E染色(200倍率) ••••••••••87
圖十一 塗抹DMBA十週倉鼠頰囊袋H&E染色(200倍率) ••••••••88
圖十二 塗抹DMBA十二週倉鼠頰囊袋H&E染色(200倍率) ••••••89
圖十三 正常倉鼠頰囊袋MMP-2染色(200倍率) ••••••••••••••••90
圖十四 塗抹DMBA四週倉鼠頰囊袋MMP-2染色(200倍率) •••••91
圖十五 塗抹DMBA六週倉鼠頰囊袋MMP-2染色(200倍率) •••••92
圖十六 塗抹DMBA八週倉鼠頰囊袋MMP-2染色(200倍率) •••••93
圖十七 塗抹DMBA十週倉鼠頰囊袋MMP-2染色(200倍率) •••••94
圖十八 塗抹DMBA十二週倉鼠頰囊袋MMP-2染色(200倍率) •••95
圖十九 正常的倉鼠頰囊袋MMP-9染色(200倍率) •••••••••••••96
圖二十 塗抹DMBA四週倉鼠頰囊袋MMP-9染色(200倍率) •••• 97
圖二十一 塗抹DMBA六週倉鼠頰囊袋MMP-9染色(200倍率) •• 98
圖二十二 塗抹DMBA八週倉鼠頰囊袋MMP-9染色(200倍率) •• 99
圖二十三 塗抹DMBA十週倉鼠頰囊袋MMP-9染色(200倍率) ••100
圖二十四 塗抹DMBA十二週倉鼠頰囊袋MMP-9染色(200倍率) 101
圖二十五 倉鼠頰囊袋組織分泌的MMPs之明膠酶譜•••••••••••102
圖二十六 MMP-2明膠酶分解活性量化圖••••••••••••••••••••••103
圖二十七 MMP-9明膠酶分解活性量化圖••••••••••••••••••••••104
圖二十八 MMP-2明膠酶分解活性與時間之關係••••••••••••••••105
圖二十九 MMP-9明膠酶分解活性與時間之關係••••••••••••••••106

行政院衛生署。中華民國九十一年臺灣地區死因統計結果摘要。2003.
國家衛生研究院癌症研究組,臺灣癌症臨床研究合作組織。口腔癌之治療共識。1998.
姚丽艷,张白凌,施作霖。MMP-9在口腔鱗癌的表達。福建醫科大學學報2000; 34-1.
蔡崇弘,邱清華。臺灣地區口腔癌發生率研究。中華牙醫學會雜誌 1990; 9: 104-115.
蔡華雄,潘朝斌,李海剛,葉剑涛,朱越廣。基貭金属蛋白酶在口腔黏膜癌変过程中的表達及临床意义。中山醫科大學學報 2002; 23-26.
Alvarez OA, Carmichael DE, DeClerck YA. Inhibition of collagenolytic activity and metastasis of tumor cells by a recombinant human tissue inhibitor of metalloproteinases. J Natl Cancer Inst 1990; 82: 589-595.
Apte SS, Olaen BR, Murphy G. The gene structure of tissue inhibitor of metalloproteinase (TIMP-3) and its inhibitor activities define the distinct TIMP gene family. J Biol Chem 1995; 270: 14313-14318.
Arenas-Huertero FJ, Herrera-Goepfert R, Delgado-Chavez R, Zinser-Sierra JW, De la Garza-Salazar JG, Herrera-Gomez A, Perez-Cardenas E. Matrix metalloproteinases expressed in squamous cell carcinoma of the oral cavity: correlation with clinicopathologic features and neo-adjuvant chemotherapy response. J Exp Clin Cancer Res 1999; 18: 279-284.
Bonnadonna G, Rossi A, Valagussa P, Banfi A, Veronesi U. The CMF program for operable breast cancer with positive axillary nodes. Updated analysis on the disease-free interval, site of relapse and drug tolerance. Cancer 1977; 39: 2904.
Boone TC, Johnson MJ, DeClerck YA, Langley KE. cDNA cloning and expression of a metalloproteinase inhibitor related to tissue inhibitor of metalloproteinases. Proc Natl Acad Sci USA 1990; 87: 2800-2804.
Bosman FT, Cleutjens J, Beek C, Havenith M. Basement membrane heterogeneity. Histochem J 1989; 21: 629-633.
Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 1993; 4: 197-250.
Charous SJ, Stricklin GP, Nanney LB, Netterville JL, Burkey BB. Expression of matrix metalloproteinases and tissue inhibitor of metalloproteinases in head and neck squamous cell carcinoma. Ann Otol Rhinol Laryngol 1997; 106: 271-278.
Chau KK, Edwards MB. Topical carcinogenesis by N-methyl-N-nitrosourea in Syrian hamster cheek pouch and oral mucosa. Arch Oral Biol 1984; 29: 185-190.
Chen CH. An epidemiological study of oral squamous cell carcinoma in southern Taiwan. J Formosa Dent Assoc 1987; 10: 268-274.
Conney AH. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes Memorial Lecture. Cancer Res 1982; 42: 4875.
DeClerck YA, Perez N, Shimada H, Boone TC, Langley KE, Taylor SM. Inhibition of invasion and metastasis in cell transfected with an inhibitor of metalloproteinases. Cancer Res 1992; 52: 701-708.
DeClerck YA, Szpirer C, Aly MS, Cassiman JJ, Eeckhout Y, Rousseau G. The gene for tissue inhibitor of metalloproteinases-2 islocalized on human chromosome arm 17q25. Genomics 1992; 14: 782-784.
DeVita VT Jr, Young RC, Canellos GP. Combination versus single agent chemotherapy: a review of the basis for selection of drug treatment of cancer. Cancer 1975; 35: 98.
Doll R, Peto R. The causes of cancer. J Natl Cancer Inst 1981; 66: 1191.
Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2: 161-174.
Erlich P. Beitrage zur theorie und praxis der histologishen farbung. Doctoral Thesis. University of Leibzig, Germany, 1878.
Ferguson JW, Smillie AC. Vascularization of premalignant lesions in carcinogen-treated hamster cheek pouch. JNCI 1979; 63: 1383-1392.
Ferguson JW, McMillan MD, Smillie AC. Ultrastructural examination of experimentally induced premalignant lesions. Int J Oral Maxillofac Surg 1991; 20: 112-118.
Fini ME, Cook JR, Mohan R, et al: Regulation of matrix metalloproteinase gene expression, in Parks WC, Mechan RP (eds): Matrix Metalloproteinases. San Diego, CA, Academic Press, 1998; pp300-356.
Flenniken AM, Williams BR. Developmental expression of the endogenous TIMP gene and a TIMP-lacZ fusion gene in transgenic mice. Genes Dev 1990; 4: 1094-1106.
Flug M, Kopf MP. The basement membrane and its involvement in carcinoma cell invasion. Acta Anatomica 1995; 152: 69-84.
Flynn EA, Schwartz JL, Shklar G. Sequential mast cell infiltration and degranulation during experimental carcinogenesis. J Cancer Res Clin Oncol 1991; 117: 115-122.
Franks LM, Teich NM. Introduction to the Cellular and Molecular Biology of Cancer (2nd edn). Oxford University Press Inc, 1991.
Friedewald WF, Rous P. The initiating and promoting elements in tumor production: An analysis of the effects of tar, benzpyrene, and methylcholanthrene on rabbit skin. J Exp Med 1944; 80: 101-125.
Giannelli G, Brassard J, Foti C, Stetler-Stevenson WG, Falk-Marzillier J, Zambonin-Zallone A, Schiraldi O, Quaranta V. Altered expression of basement membrane proteins and their integrin receptors in lichen planus: possible pathogenetic role of gelatinases A and B. Lab Invest 1996; 74: 1091-1104.
Goldberg GI, Strongin A, Collier IE, Genrich LT, Marmer BL. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J Biol Chem 1992; 267: 4583-4591.
Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: structure, regulation, and biological functions. Eur J Cell Biol 1997; 74: 111-122.
Greene J, Wang M, Liu YE, Raymond LA, Rosen C, Shi YE. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J Biol Chem 1996; 271: 30375-30380.
Guo H, Zucker S, Gordon MK, Toole BP, Biswas C. Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J Biol Chem 1997; 272: 24-27.
HE CS, Wilhelm SM, Pentland AP, Marmer BL, Grant GA, Eisen AZ, Goldberg GI. Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc Natl Acad Sci USA 1989; 86: 2632-2636.
Homburger F. Mechanical irritation, polycyclic hydrocarbons, and snuff. Arch Pathol 1971; 91: 411-417.
Hong SD, Hong SP, Lee JI, Lim CY. Expression of matrix metalloproteinase-2 and -9 in oral squamous cell carcinomas with regard to the metastatic potential. Oral Oncol 2000; 36: 207-213.
Huebner K, Isobe M, Gasson JC, Golde DW, Croce CM. Localization of the gene encoding erythroid-potentiating activity to chromosome region Xpll.l-Xpll.4. Am J Hum Genet 1986; 38: 819-826.
IARC. The evaluation of carcinogenic risk of chemicals to humans. Lyon: International Agency for Research on Cancer. Monographs 1985; 37.
Jackson CJ, Nguyen M. Human microvascular endothelial cells differ from macrovascular endothelial cells in their expression of matrix metalloproteinases. Int J Biochem Cell Biol 1997; 29: 1167-1177.
Jennette KW, Jeffrey AM, Blobstein SH, Beland FA, Harvey RG, Weinstein IB. Nucleoside adducts from the in vitro reaction of benzo[a]pyrene-7,8-dihydrodiol 9,10-oxide or benzo[a]pyrene 4,5-oxide with nucleic acids. Biochemistry 1977; 16: 932-938.
Johnson MD, Kim HR, Chesler L, Tsao WG, Bouck N, Polverini PJ. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J Cell Physiol 1994; 160: 194-202.
Juarez J, Clayman G, Nakajima M, Tanabe KK, Saya H, Nicolson GL, Boyd D. Role and regulation of expression of 92-kDa type-IV collagenase (MMP-9) in 2 invasve squamous-cell-carcinoma cell lines of the oral cavity. Int J Cancer 1993; 19; 55: 10-18.
Kawamata H, Uchida D, Hamano H, Kimura-Yanagawa T, Nakashiro KI, Hino S, Omotehara F, Yoshida H, Sato M. Active-MMP2 in cancer cell nests of oral cancer patients: correlation with lymph node metastasis. Int J Oncol 1998; 13: 699-704.
Kawata R, Shinomiya T, Shimada T, Maruyama S, Hisa Y, Takenaka H, Murakami Y. Expression of matrix metalloproteinase-2 and -9 in human squamous cell carcinomas of the head and neck. Acta Otolaryngol 2002; 122: 101-106.
Kefalides NA, Alper R, Clark C. Biochemistry and metabolism of basement membrane. Int Rev Cytol 1979; 61: 167-228.
Knäuper V, Murphy G. Membrane-type matrix metalloproteinases and cell surface-associated activation cascades for matrix metalloproteinases, in parks WC, Mecham RP (eds): Matrix Metalloproteinases. San Diego, CA, Academic press 1998; 199-218.
Ko YC, Chiang TA, Chiang SJ. Prevalence of betel quid chewing habit in Taiwan and related sociodemographic factors. J Oral Pathol Med 1992; 21: 261-264.
Kolkenbrock H, Orgel D, Hecker-Kia A, Zimmermann J, Ulbrich N. Generation and activity of ternary gelatinase B/TIMP-1/ LMW-stromelysin-l complex. Biol Chem Hoppe Seyler 1995; 376: 495-500.
Koo Foundation Sun Yat-Sen Cancer Center. Oral cavity cancer clinical practice guideline. 2000; Version 1.0.
Koshiba T, Hosotani R, Wada M. Involvement of matrix metalloproteinase-2 activity in invasion and metastasis of pancreatic carcinoma. Cancer 1998; 82: 642-650.
Koyama H, Iwata H, Kuwabara Y, Iwase H, Kobayashi S, Fujii Y. Gelatinolytic activity of matrix metalloproteinase-2 and -9 in oesophageal carcinoma: a study using in situ zymography. Eur J Cancer 2000; 36: 2164-2170.
Kugler A. Matrix metalloproteinases and their inhibitors. Anticancer Res. 1999; 19: 1589-1592.
Kuo MYP, Jeng JH, Chiang CP. Mutations of Ki-ras oncogene codon 12 in betel quid chewing-related human oral squamous cell carcinoma in Taiwan. J Oral Pathol Med 1994; 23: 70-74.
Kusukawa J, Sasaguri Y, Shima I, Kameyama T, Morimatsu M. Expression of matrix metalloproteinase-2 related to lymph node metastasis of oral squamous cell carcinoma. A clinicopathologic study. Am J Clin Pathol 1993; 99: 18-23.
Kwan HW. A statistical study on oral carcinomas in Taiwan with emphasis on the relationship with betel nut chewing: A preliminary report. J Formosa Med Assoc 1976; 75: 497-505.
Kylmaniemi M, Oikarinen A, Oikarinen K, Salo T. Effects of dexamethasone and cell proliferation on the expression of matrix metalloproteinases in human mucosal normal and malignant cells. J Dent Res 1996; 75: 919-926.
Leco KJ, Khokha R, Pavloff N, Hawkes SP, Edwards DR. Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem 1994; 269: 9352-9360.
Lee KY, Lijinsky W, Magee PN. Methylation of ribonucleic acids of liver and other organs in different species treated with C14- or H3-dimethylnitrosamines in vivo. J Natl Cancer Inst 1964; 32: 65.
Liotta LA, Rao CN, Barsky SH. Tumor invasion and the extracellular matrix. Lab Invest 1983; 49: 636-649.
Miller EC. Some current perspectives on chemical carcinogenesis in humans and experimental animals: Presidential address. Cancer Res 1978; 38: 1479.
Morris AL. Factors influencing experimental carcinogenesis in the hamster cheek pouch. J Dent Res 1961; 40: 3-15.
Murphy G, Reynolds JJ, Hembry RM. Metalloproteinases and cancer invasion and metastasis. Int J Cancer 1989; 44: 757-760.
Murphy G, Docherty AJ. Matrix metalloproteinases and their inhibitors. Am J Respir Cell Mol Biol 1992; 7: 120-125.
Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem 1997; 378: 151-160.
Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem 1999; 274: 21491-21494.
Nakamura H, Ueno H, Yamashita K, Shimada T, Yamamoto E, Noguchi M, Fujimoto N, Sato H, Seiki M, Okada Y. Enhanced production and activation of progelatinase A mediated by membrane-type 1 matrix metalloproteinase in human papillary thyroid carcinomas. Cancer Res 1999; 59: 467-473.
Nakanishi Y, Noguchi M, Matsuno Y. p53 expression in squamous cell carcinoma and dysplasia of the vocal cords and oral cavity. Appl Immunohistochem 1993; 1: 101-107.
Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinase: biologic activity and clinical implications. J Clin Oncol 2000; 18: 1135-1149.
Nomura H, Fujimoto N, Seiki M, Ma M, Okada Y. Enhanced production of matrix metalloproteinases and activation of matrix metalloproteinase (gelatinase A) in human gastric carcinomas. Int J Cancer 1996; 69: 9-16.
Odukoya O, Shklar G. Two-phase carcinogenesis in hamster buccal pouch. Oral Surg 1982; 54: 547-552.
Park BK, Zeng X, Glazer RI. Akt1 induces extracellular matrix invasion and matrix metalloproteinase-2 activity in mouse mammary epithelial cells. Cancer Res 2001; 61: 7647-7653.
Raymond W Ruddon. Cancer Biology (2nd edn). Oxford University Press Inc, 1999.
Salley J. Experimental carcinogenesis in the cheek pouch of the Syrian hamster. J Dent Res 1954; 33: 253-262.
Samantaray S, Sharma R, Chattopadhyaya TK, Gupta SD, Ralhan R. Increased expression of MMP-2 and MMP-9 in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 2004; 130: 37-44.
Sarrif AM, Bertram JS, Kamarck M, Heidelberger C. The isolation and characterization of polycyclic hydrocarbon-binding proteins from mouse liver and skin cytosols. Cancer Res 1975; 38: 816.
Schmidt M, Polednik C, Hoppe F. Proteolytic patterns of head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 1999; 256: 346-350.
Schultz RM, Silberman S, Persky B, Bajkowski AS, Carmichael DF. Inhibition of human recombinant tissue inhibitor of metalloproteinases of human amnion invasion and lung colonization by murine B16-F10 melanoma cells. Cancer Res 1988; 48: 5539-5545.
Selye H. The Mast cell. Washington DC: Butterworths Press 1965; 302.
Shapiro SD, Kobayashi DK, Welgus HG. Identification of TIMP-2 in human alveolar macrophages. J Biol Chem 1992; 267: 13890-13894.
Shklar G. The effect of manipulation and incision on experimental carcinoma of hamster buccal pouch. Cancer Res 1968; 28: 2180-2182.
Shklar G. Experimental oral pathology in the Syrian hamster. Prog Exp Tumor Res 1972; 16: 518-538.
Shklar G. Experimental pathology of oral cancer. In: Shklar G (ed.), Oral Cancer, pp. 41-54, Philadelphia: WB Sunders Co., 1984.
Silverman S. Leukoplakia and erythroplakia. In: Oral Cancer. 4th ed. Canada: BC Decker Inc. 1998; 25-40.
Sobin LH, Wittekind CH. TNM classification of malignant tumor (6th edn). Union Internationale Contre le Cancer 2002.
Stetler-Stevenson WG, Brown PD, Onisto M, Levy AT, Liotta LA. Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. J Biol Chem 1990; 265: 13933-13938.
Stricklin GP, Welgus HG. Human skin fibroblast collagenases inhibitors: purification and biochemical characterization. J Biol Chem 1983; 258: 12252-12258.
Sutinen M, Kainulainen T, Hurskainen T, Vesterlund E, Alexander JP, Overall CM, Sorsa T, Salo T. Expression of matrix metalloproteinases (MMP-1 and -2) and their inhibitors (TIMP-1, -2 and -3) in oral lichen planus, dysplasia, squamous cell carcinoma and lymph node metastasis. Br J Cancer 1998; 77: 2239-2245.
Takigawa M, Nishida Y, Suzuki F, Kishi J, Yamashita K, Hayakawa T. Induction of angiogenesis in chick yolk-sac membrane by polyamines and its inhibition by tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2). Biochem Biophys Res Commun 1990; 171: 1264-1271.
Thomas GT, Lewis MP, Speight PM. Matrix metalloproteinases and oral cancer. Oral Oncol 1999; 35: 227-233.
Thorgeirsson UP, Liotta LA, Kalebic T, Margulies IM, Thomas K, Rios-Candelore M, Russo RG. Effect of natural protease inhibitors and a chemoattractant on tumor cell invasion in vitro. J Natl Cancer Inst 1982; 69: 1049-1054.
Thorgeirsson UP, Yoshiji H, Sinha CC, Gomez DE. Breast cancer: tumor neovasculature and the effect of tissue inhibitor of metalloproteinases l (TIMP-1) on angiogenesis. In Vivo 1996; 10: 137-144
Tideman H, Cheung LK, Samman N. Immediate reconstruction of maxillectomy defects with the temporalis muscle flap and/orb buccal fat pad. Chin J Oral Maxillofac Surg 1992; 3: A-23.
Tokuraku M, Sato H, Murakami S, Okada Y, Watanabe Y, Seiki M. Activation of the precursor of gelatinase A/72 kDa type IV collagenase/MMP-2 in lung carcinomas correlates with the expression of membrane-type matrix metalloproteinase (MT-MMP) and with lymph node metastasis. Int J Cancer 1995, 764, 355-359.
Tryggvason K, Hoyhtya M, Pyke C. Type IV collagenase in invasion and metastasis. Br Cancer Res Treat 1993; 24: 209-218.
Tsai CH, Hsieh YS, Chou MY, Chang YC. Matrix metalloproteinases 2 and matrix metalloproteinases 9 expression in human oral squamous cell carcinoma and the effect of protein kinase C inhibitors: Preliminary observations. Oral Surg Oral Med Oral Patho Oral Radiol & Endod 2003; 95: 710-716.
Ueno H, Nakamura H, Inoue M, et al. Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in human invasive breast carcinomas. Cancer Res 1997; 57: 2055-2060.
US Public Health Service. The health consequences of smoking-cancer: a report of the surgeon general. Rockville MD: US Department of Health and Human Services, Office on Smoking and Health. 1982.
Wicha MS, Liotta LA, Garbisa S, Kidwell WR. Basement membrane collagen requirements for attachment and growth of mammary epithelium. Exp Cell Res 1979; 124: 181-191.
Wick M, Burger C, BNsselbach S, Lucibello E, Muller R. A novel member of human tissue inhibitor of metalloproteinases (TIMP) gene family is regulated during GI progression, mitogenic stimulation, differentiation and senescence. J Biol Chem 1994; 269: 18953-18960.
William GS. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 1999; 103: 1237-1241.
Woessner JF. The matrix metalloproteinase family, in Parks WC, Mecham RP (eds): Matrix Metalloproteinase. San Diego, CA, Academic Press, 1998; 1-14.
Woessner JF. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 1991; 5: 2145-2155.
Yang TT, Hawkes SP. Role of the 21-kDa protein TIMP-3 in oncogenic transformation of cultured chicken embryo fibroblasts. Proc Natl Acad Sci USA 1992; 89: 10676-10680.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李美華(2000):〈跨國企業組織文化與跨文化管理研究之應用與探討-以比較分析在台美商李奧貝納廣告公司與日商博陽廣告公司為例〉。《新聞學研究》,63:163-199。
2. 李光真(1996):〈層層人際網,共築傳銷夢?〉,《光華雜誌》,九月號,頁26-29。
3. 沈世玲(2002):〈1年10個月,家庭主婦變直銷高手〉。《直銷世紀》,四月號,第112期,頁34-36。
4. 沈世玲(2002):〈施慶萍:跨國經營,首重團隊合作〉。《直銷世紀》,六月號,第114期,頁38-39。
5. 沈世玲(2002):〈何瓊安,伙伴成功就是我的經營動力〉。《直銷世紀》,十月號,第118期,頁36-37。
6. 何雍慶(1994):〈任務環境、組織結構與組織績效之關係〉。《中山管理評論》,4:21-54。
7. 徐木蘭(1984):〈組織溝通的個案研究-以化學工業研究所為例〉。《國立政治大學學報》,第四十九期。
8. 秦琍琍(2000):〈組織傳播-源起、發展與在台灣之現況〉。《新聞學研究》,63:137-162。
9. 秦琍琍(2001):〈企業論述與公共關係-從語藝的觀點出發〉。《廣告學研究》,15:27-48。
10. 趙凡誼(2002):〈廖景顯:百分百複製,薪水倍數成長〉。《直銷世紀》,三月號,第111期,頁24-26。
11. 趙凡誼(2002):〈侯麗芳:傳銷再次證明我能〉。《直銷世紀》,九月號,第117期,頁31-33。
12. 蔡崇弘,邱清華。臺灣地區口腔癌發生率研究。中華牙醫學會雜誌 1990; 9: 104-115.