跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 14:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱國成
研究生(外文):Kuo-Cheng Chiu
論文名稱:台灣產長牡蠣殼內珍珠質之生化特性分析
論文名稱(外文):Biochemical characterization of the nacreous shell layer of oyster Crassostrea gigas
指導教授:李天翎林育誼
指導教授(外文):Tien-Ling LeeYuh-Yih Lin
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:口腔醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:酸萃取物乙基硫醇萃取物醣蛋白多陰離子性蛋白質鈣化鹼性磷酸酶
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
從台灣長牡蠣的外殼珍珠質中,萃取出多種的蛋白質分子,並且對這些被萃取出的蛋白質分子進行初步的生化特性分析與生物活性測試。廣佈於文石內的蛋白質,在經過醋酸的去礦物質化後,部分可溶解於醋酸溶液中,此部分萃取物稱之為酸萃取物;而因聚集作用而不溶解的或吸附在不溶解於醋酸之基質上的蛋白質,則使用十二基硫酸鈉聚丙烯醯胺與乙基硫醇將之萃取出來,此部分萃取物稱之為乙基硫醇萃取物。此兩種萃取物在經過膠體電泳,將所含的蛋白質分離之後,利用多種的染色法來測定所含蛋白質的種類與特性;於長牡蠣珍珠質的乙基硫醇萃取物中,發現有四種醣蛋白的存在;利用Stains-all與Alcian blue染色法,偵測出在乙基硫醇萃取物內含有兩種多陰離子性蛋白質,可能與鈣離子的結合有關。令人好奇的是,在分子量45與40kDa的位置,同時於醣蛋白與多陰離子性蛋白質的染色皆呈現陽性結果,而這兩個位置上的蛋白質是否為同一種蛋白,或只是剛好分子量相似的兩種相異蛋白,則需要再作進一步的分析。U2-OS是一種類造骨細胞株,能在體外培養時進行自發性的礦物質化,利用U2-OS具有造骨細胞的特性,將細胞與萃取物共同培養7天,藉以觀察酸萃取物與乙基硫醇萃取物是否具有生物活性;在細胞型態觀察方面,乙基硫醇萃取物在第7天時,能明顯的促進細胞產生鈣化現象,而酸萃取物則沒有影響;在活化細胞鹼性磷酸酶活性方面,不管是酸萃取物或是乙基硫醇萃取物,皆無法促進鹼性磷酸酶活性的增加。總而言之,在台灣長牡蠣的珍珠質中,不但發現有醣蛋白以及多陰離子性蛋白質的存在,更發現珍珠質的乙基硫醇萃取物具有促進細胞鈣化的生物活性。

目錄-------------------------------------------- Ⅰ
圖次-------------------------------------------- Ⅲ
中文摘要---------------------------------------- 1
英文摘要---------------------------------------- 2
壹、前言---------------------------------------- 4
貳、文獻回顧------------------------------------ 6
2.1 珍珠層----------------------------------- 6
2.2 水溶性基質------------------------------- 9
2.3非水溶性基質------------------------------ 13
2.4體內與體外研究---------------------------- 15
2.5骨的形成---------------------------------- 17
2.6鹼性磷酸酶-------------------------------- 18
參、材料與方法----------------------------------- 20
一、實驗材料---------------------------------- 20
1. 藥品及試劑------------------------------- 20
2. 儀器設備--------------------------------- 21
二、細胞株資料單------------------------------ 22
三、實驗方法---------------------------------- 24
3.1珍珠層粉末(nacre power)來源------------- 24
3.2樣本製備--------------------------------- 24
3.3 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)-------------------------------------- 26
3.4硝酸銀染色(silver stain)------------------ 30
3.5 醣蛋白測定------------------------------ 31
3.6 Alcian blue 染色法------------------------ 31
3.7 Stains-all 染色法-------------------------- 32
3.8細胞培養--------------------------------- 32
3.9 Von-Kossa 染色法------------------------- 33
3.10 鹼性磷酸酶活性測定--------------------- 33
肆、結果----------------------------------------- 34
伍、討論----------------------------------------- 37
陸、結論----------------------------------------- 41
參考文獻----------------------------------------- 49

Almeida M J, Milet C, Peduzzi J, Pereira L, Haigle J, Barthelemy M, Lopze E. Effect of Water-Soluble Matrix Fraction Extracted From the Nacre of Pinctada maxima on the Alkaline Phosphatase Activity of Cultured Fibroblasts. Joural of Experimental Zoology (MOL DEV EVOL) . 288:327-334, 2000.
Atlan G, Balmain N, Berland S, Vidal B, Lopez E. Recon structuction of human maxillary defects with nacre powder: histological evidence for bone regeneration. C. R. Acad. Sci. Paris/Life Sci. 320:253-258, 1997.
Atlan G, Delattre O, Berland S, Le Faou A, Nabias G, Cot D, Lopez E. Interface between bone and nacre implants in sheep. Biomaterials 20:1017-1022, 1999.
Bedoueta L, Schuller M. J, Marin F, Milet C, Lopez E, Giraud M. Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata:extraction and partial analysis of nacre proteins. Comparative Biochemistry and Physiology Part B 128, 389-400, 2001.
Belcher, A.M., Wu, X.H., Christensen, R.J., Hansma, P.K., Stucky, G.D., and Morse, D.E. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381, 56-58, 1996.
Bevelander, G., Nakahara, H. An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve mollusks. Calc. Tiss. Res. 3:84-92; 1969.
Bobbio A. The first endosseous alloplastic implant in the history of man. Bullentin of the History of Dentistry. 20(1):1-6, 1972.
Camprasse S, Camprasse G, Pouzol M, Lopez E. Artificial dental root made of natural calcium carbonate (Bioracine). Clinical Materials. 5:235-250, 1990.
Charles E. Bowen and Hieng Tang. Conchiolin Protein in Aragonite Shells of Mollusks. Comp. Biochem. Physiol. Vol. 115A, No. 4, 269-275, 1996.
Delattre O, Catonne Y, Berland S, Borzeix S, Lopez E. Use of mother of pearl as a bone substitute-experimental study in sheep. Eur J Orthop Surg Traumatol. 7(2):143-147, 1997.
Falini, G., Albeck, S., Weiner, S., and Addadi, L. Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules. Science 271, 67—69, 1996.
Farley J.R, Ivey J.L, Baylink D.J. Human alkaline phosphatase:kinetic studies including pH dependence and inhibition by theophyline. J Biol Chem 255:4680—4686, 1980.
Gregoire, C. Structure of the molluscan shell. In: Florkin, M.; Scheer, B.T.(eds.). Chemical Zoology, Vol.Ⅶ. New York: Academic Press; 45-102, 1972.
Halloran B.A, Donachy J.E. Characterization of organic matrix macromolecules from the shells of Antarctic scallop, Adamussium colbecki. Comp Biochem Physiol 111B:221—231, 1995.
Harada K, Oida S, Sasaki S. Chondrogenesis and osteogenesis of bone marrow-derived cells by bone-inductive factor. Bone 9:177—183, 1998.
Katagiri T., Yamaguchi A., Ikeda T., Yoshiki S., Wozney J.M., Rosen V., Wang E.A., Tanaka H., Omura S., Suda T. The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun 172:295—299, 1990.
Kono M., Hayashi N., Samata T. Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochem Biophys Res Commun 269:213—218, 2000.
Lamghari M, Huet H, Laurent A, Berland S, Lopez E. Amodel for evaluating injectable bone replacement in the vertebrae of sheep: radiological and histological study. Biomaterials. 20:2107-2114, 1999.
Le Faou A, Berland S, Lallier F, Lopez E. Osteoinductive effects induced by nacre implanted in subcutaneous pouches in rat. Calcif Tissue Int 56A:156, 1995.
Le Faou A, Berland S, Lallier F, Lopez E. Local regulation of the osteoinductive process induced by nacre in connective tissues. Ann Endoc 57(Suppl 4A):75, 1996.
Levi Y., Albeck S., Brack A., Weiner S., and Addadi L. Control Over Aragonite Crystal Nucleation and Growth: An In Vitro Study of Biomine- ralization. Chem. Eur. J. 4, 389—396, 1998.
Liao H, Brandsten C, Lundmark C, Wurst T, Li J. Responses of bone to titania—hydroxyapatite composite and nacreous implants: a preliminary comparison by in situ hybridization. J Mater Sci 8:823—827, 1997.
Lopez E, Vidal B, Berland S, Camprasse C, Camprasse G, Silve C. Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro. Tissue Cell 24:667—679, 1992.
Marin, F., Corstjens, P., De Gaulejac, B., DeVrind-De-Jong, E., Westbroek, P. Mucin and molluscan calcification. Molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna nobilis (Bivalvia, Pteriomorphia). J. Biol. Chem. 275 (27) , 20667-20675, 2000.
McComb R.B, Bowers G.N, Posen S. Alkaline phosphatase. New York: Plenum Press, 1979.
Miyamoto, H., Mryashita, T., Okushima, M., Nakano, S., Morita, T., Matsushiro, A. A Carbonic anhydrase from the nacreous layer in oyster pearls. Proc. Natl. Acad. Sci. 93, 9657-9660, 1996.
Rodan G.A, Rodan S.B. Expression of the osteoblastic phenotype. In: Peck WA, editor. Advances in bone and mineral research. Amsterdam: Elsevier. p 244—275, 1984.
Samata, T., Hayashi, N., Kono, M., Hasegawa, K., Horita, C., and Akera, S. A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Lett. 462, 225-229, 1999.
Schaffer, T. E., Ionescu-Zanetti, C., Proksch, R., Fritz, M., Walters, D. A., Almqvist, N., Zaremba, C. M., Belcher, A.M., Smith, B.L., Stucky, G.D., Morse, D.E., and Hansma, P. K. Chem. Mat. 9, 1731—1740, 1997.
Shen, S., Belcher, A.M., Hansma, P.K., Stucky, G.D., Morse, D.E., Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J. Biol. Chem. 272(51) , 32472-32481, 1997.
Silve C, Lopez E, Vidal B, Smith D C, Camprasse S, Camprasse G, Couly G. Nacre initiates biomineralization by human osteoblasts maintained in vitro. Calcif Tissue Lnt. 51: 363-369, 1992.
Smith, B.L., Schaffer, T., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A.M., Stucky, G.D., Morse, D.E., and Hansma, P.K. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761—763, 1999.
Smith, B.L. Studying shells: a growth industry. Chem. Ind. 16, 649-653, 1998.
Sudo, S., Fujikawa, T., Nagakura, T. et al. Structures of mollusc shell framework proteins. Nature 387, 563-564, 1997.
Tenenbaum H.C. Role of organic phosphate in mineralizrtion of bone in vitro. J Den Res. 60:1486-1489, 1981.
Tucker R.F, Shipley G.D, Moses H.L. Growth inhibitor from BSC-1 cells closely related to platelet type b transforming factor. Science 226:705—707, 1984.
Walters, D.A., Smith, B.L., Belcher, A.M., Paloczi, G.T., Stucky, G.D., Morse, D.E., and Hansma, P.K. Modification of calcite crystal growth by abalone shell proteins: an atomic force microscope study. Biophys.J. 72, 1425—1433, 1997.
Weiner S, Hood L. Soluble protein of the orangic matrix of mollusk shell:a potential template for shell formation. Science. 190, 987-989, 1975.
Weiner, S. Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth. CRC Crit. Rev. Biochem. 20 (4) , 365-408, 1986.
Weiner, S., Traub, W. Macromolecules in mollusk shells and their functions in biomineralization. Trans. R. Soc. Lond. B 304, 425-434, 1984.
Weiss, I.M., Kaufmann, S., Mann, K., Fritz, M. Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusc Haliotis laeigata. Biochem. Biophys. Res. Commun. 267, 17-21, 2000.
Weiss, I.M., Kaufmann, S., Mann, K., Fritz, M., 2001. Perlustrin, a Haliotis laevigata (Abalone) Nacre Protein, Is Homologous to the Insulin-like Growth Factor Binding Protein N-Terminal Module of Vertebrates. Biochemical and Biophysical Research Communications 285, 244-249, 2001.
Weiss, I.M., Renner, C., Strigl, M.G., and Fritz, M. Chem.Mater., in press, 2001.
Westbroek P, Marin F. A marriage of bone and nacre. Nature. 392(30) : 861-862, 1998.
Wilbur, K.M. Shell formation and regeneration. In: Wilbur, K.M.; Yonge, C.M., eds. Physiology of Mollusca, vol.Ⅰ.New York: Academic Press; 243-277, 1964.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top