跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 08:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳嘉雄
研究生(外文):Jia-Shiong Chen
論文名稱:抗氧化物對神經細胞遭受神經毒害之保護作用研究
論文名稱(外文):Protective Effect of Antioxidants on MPTP- and Rotenone-Induced Neurotoxicity in Neuroblastoma SH-SY5Y cells
指導教授:許立松
指導教授(外文):Li-Sung Hsu, Ph. D.
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:109
中文關鍵詞:帕金森氏症氧化壓力粒線體
外文關鍵詞:rotenoneMPTPParkinson''s disease
相關次數:
  • 被引用被引用:3
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
帕金森氏症為一種好發於中老年人的神經退化性疾病,致病型式可區分為遺傳型與環境毒物型,主要的臨床現象為運動失調、顫抖等不自主的症狀。之前文獻報導指出由病理學研究帕金森氏症的致病機轉,發現有神經損傷情形造成dopamine分泌下降而無法執行正常神經衝動,之後由生化研究更深入指出,粒線體complexΙ受到環境毒物如(MPTP、rotenone)等攻擊,使得ROS (reactive oxygen species)增加造成氧化壓力促使神經細胞apoptosis或degeneration。本論文中利用環境毒物rotenone與MPTP處理human dopaminergic neuroblastoma SH-SY5Y cells進行研究,探討當細胞受到毒物攻擊模擬帕金森氏症的致病過程中,抗氧化物質對神經保護的能力。從MTT assay、trypan blue exclusion assay等實驗方法,發現rotenone、MPTP可以毒殺神經細胞,計算rotenone的IC50大於1 μM,MPTP的IC50介於1 mM到2 mM中,而且在從PI stain、DNA fragmentation等實驗證明,細胞死亡的機制是透過apoptosis,處理0.5 μM rotenone的分佈於 sbu-G0/G1的細胞約佔27%,處理1 mM MPTP時分佈sub-G0/G1的細胞約佔36%。此外由 dihydroethidium (DHE) 偵測細胞中superoxide的含量,發現ROS可以被誘導上升,推論ROS的上升與細胞走向apoptosis有關。為了確認上述現象,細胞合併處理BSO以降低細胞中glutathion的含量,發現rotenone、MPTP的致死情形更為明顯,顯示ROS增加與神經細胞傷害有關。而根據先前文獻指出帕金森氏症的指標性蛋白α-synuclein會在神經細胞內堆積,而造成α-synuclein增加的原因推論是由ROS攻擊正常的α-synuclein而產生不正常堆疊所造成。在本論文的實驗結果發現處理rotenone或MPTP培養24小時會促使α-synuclein的量增加,顯示rotenone及MPTP可以誘導類似帕金森氏症生成的症狀。以western blotting進一步證明促使apoptosis的機制是透過活化caspase 3、PARP。而在合併處理抗氧化劑的實驗,證明抗氧化劑(baicalein、N-actylcystein、Acetyl -L-carnitine、lipoic acid)可以減緩rotenone、MPTP處理24小時所促使的細胞凋亡,而且caspase 3、PARP的活化明顯受到抑制,推論抗氧化劑是透過清除ROS減低caspase的活化,達到保護神經細胞的功能。
Recently, it have been shown that rotenone and MPTP, a specific inhibitor of mitochondrial complexⅠ, is a useful tool in animal model of Parkinson’s disease. In this thesis, a human dopaminergic neuronblastoma SH-SY5Y cell line was used to study the effect of exposure to rotenone and MPTP on cell death, activation of stress-induce pathway and aggregation ofα-synuclein, the characteristic protein accumulated in lewy bodies and mimic the pathogenesis of Parkinson’s disease. Moreover it was investigated that the role of antioxidants play in the rotenone- and MPTP-induced α-synuclein aggregattion, oxidative stress and apoptosis. The results showed that both toxins induce a time and dose-dependant decrease in cell survival with IC50 approached values of 0.5 μM after 48hr for rotenone and 1 mM after 24h for MPTP, respectively. Rotenone and MPTP induced apoptosis was demonstrated by using trypan blue exclusion assay, PI staining, DNA fragmentation, Western blotting assay. In addition, it was found that rotenone and MPTP induced apoptosis an increase in ROS production. The Rotenone- and MPTP-induced cell death and caspase 3 activation were reduced by pretreatment with antioxidants (N-acetyl-cystein (10 mM), Baicalein(40 μM), Acetyl-L-Carnitine(0.5 mM) and Lipoic acid (0.1 mM)),indicated a role of ROS in the neurotoxicity. These results suggested that the antioxidants prevent neurons cells from rotenone and MPTP induce apoptosis through decreasing oxidative stress.
目錄:
縮寫表 4
中文摘要 6
英文摘要 8
緒論 9
實驗 一、試劑 25
二、儀器 28
三、方法 30
1.細胞培養 30
2.細胞存活率試驗(MTT Assay) 30
3.Trypan blue exclusion assay 31
4.觀察細胞外形 32
5.細胞週期分佈分析(PI stain) 32
6.DNA fragmentation assay 33
7.利用流式細胞儀分析細胞內的活性氧分子 34
8.caspase 3 activity assay 35
9.western blotting 35
結果 38
1. Rotenone可以毒殺neuroblastoma SH-SY5Y細胞 38
2.MPTP可以毒殺neuroblastoma SH-SY5Y cells 39
3.Rotenone的細胞毒性是透過誘導細胞凋亡 40
4.MPTP的毒性是透過誘導 SH-SY5Y行細胞凋亡 41
5.Rotenone、MPTP會增加活性氧分子生成的增加 41
6.Rotenone、MPTP會活化PARP與Caspase 3 42 7.Rotenone and MPTP 會促使α-synuclein的堆積 43
8.合併處理抗氧化劑可以減緩rotenone、MPTP所造成的細胞毒性 44
9.抗氧化物可以降抵rotenone、MPTP所誘導的活性氧分子的生成 46
10.抗氧化物可以降低由rotenone、MPTP所促使caspase 3與
PARP的活化 47
11.MPTP處理1mM有活化JNK的現象 48
討論 59
參考文獻 66
表圖 78
參考文獻
1.Chance B., Sies H. and Boveries H. Hytroperoxide metabolism in mammalian organs. Physiol. Rev. 1979; 59, 527-605.
2.Boveris A., Oshino N. and Chance B. The cellular production of hydrogen peroxide. Biochem. J. 1972; 128,617-630.
3.Turrens J.F. and Boveris A. Generaton of superoxide anion by the dehydrogenase of bovine heart mitochrondria. Biochem. J. 1980; 191, 421-427.
4.Cai YJ., Ma LP., Hou LF., Zhou B., Yang L. and Liu ZL. Antioxidant effects of green tea polyphenols on free radical initiated peroxidation of rat liver microsomes. Chem Phys Lipids. 2002; 120 (1-2): 109-17.
5.Kanner J. and Lapidot T. The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants. Free Radic Biol Med. 2001; 31 (11): 1388-95.
6.Grune T., Reiheckel T. and Davies K.J.A. Degradation of oxidized protein in mammalian cells. FASEB J. 1997; 11, 526-534.
7.Van Kuijk F.J.G.M., Sevanian A., Handelman G.J. and Dratz E.A. A new role for phospholipase A2:Protection of membranes from lipid peroxidation damage. Trend Biochem. Sci. 1987; 12, 31-34.
8.Kunkel T.A. and Loeb L.A. Fidelity of mammalian DNA polymerases. Science. 1981; 213, 765-767.
9.Deborah L. Croteau and Vilhelm A. Bohr. Repair of Oxidative Damage to Nuclear and Mitochondrial DNA in Mammalian Cells. J. Biol. Chem., 1997; 272: 25409 - 25412.
10.Sawyer D.E. and Van Houten B. Repair of DNA in mitochondria. Mutat. Res. 1997; 434,161-176.
11.Richer C., Park J.W. and Ames B.N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. 1988; 85, 6465-6467.
12.Yakes FM. and Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. 1997; 94: 514-519.
13. Youdim MB., Ben Shachar D. and Riederer P. Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand Suppl. 1989; 126:47—54
14. Jenner P. Oxidative stress as a cause of Parkinson’s disease. Acta Neurol Scand Suppl, 1991; 136:6—15.
15. Cohen G. and Heikkila RE. The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 1974; 249: 2447—2452.
16. Hensley K., Pye QN., Maidt ML., Stewart CA., Robinson KA., Jaffrey F. and Floyd RA. Interaction of -phenyl-N-tert-butyl nitrone and alternative electron acceptors with complex I indicates a substrate reduction site upstream from the rotenone binding site. J. Neurochem. 1998; 71, 2549-2557.
17. Seaton T. A., Cooper J. M. and Schapira A. H. Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors. Brain Res. 1997; 777, 110-118.
18. Liu Y., Fiskum G. and Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 2002; 80, 780-787.
19. Beal M.F. Bioenergetic approaches for neuroprotection in Parkinson''s disease Annals of Neurology. 53, S3, 2003, S39-S48
20. Giasson BI. and Lee VM. Parkin and the Molecular Pathways of Parkinson''s Disease Neuron 2001 31: 885-888.
21. Menegon A., Board PG., Blackburn AC., Mellick GD. and Le Couteur DG. Parkinson''s disease, pesticides, and glutathione transferase polymorphisms. Lancet 1998; 352: 1344-1346.
22. Abeliovich A., Schmitz Y., Farinas I., Choi-Lundberg D., Ho WH., Castillo PE., Shinsky N., Verdugo JM., Armanini M., Ryan A., Hynes M., Phillips H., Sulzer D. and Rosenthal A. Mice lacking -synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 2000; 25, 239-252.
23. Perez RG., Waymire JC., Lin E., Liu JJ., Guo F. and Zigmond MJ. A role for -synuclein in the regulation of dopamine biosynthesis.
J.Neurosci. 2002; 22, 3090-3099.
24. Masliah E., Rockenstein E., Veinbergs I., Mallory M., Hashimoto M., Takeda A., Sagara Y., Sisk A. and Mucke L. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science. 2000; 287(5456):1265-9.
25. Park J. Y. and Lansbury P. T. Jr. β-Synuclein inhibits formation of α-synuclein protofibrils: a possible therapeutic strategy against Parkinson''s disease. Biochemistry. 2003; 42, 3696-3700.
26. Menegon A., Board PG., Blackburn AC., Mellick GD. and Le Couteur DG. Parkinson''s disease, pesticides, and glutathione transferase polymorphisms. Lancet 1998; 352: 1344-1346.
27. Choi J., Conrad CC., Dai R., Malakowsky CA., Talent JA., Carroll CA., Weintraub ST. and Gracy RW. Vitamin E prevents oxidation of antiapoptotic proteins in neuronal cells. Proteomics 2003; 3: 73-77.
28. Ollace V., Iannone M., Muscoli C., Palma E., Granato T., Rispoli V.,
Nistico R., Rotiroti D. and Salvemini D. The role of oxidative stress in paraquat-induced neurotoxicity in rats: protection by nonpeptidyl superoxide dismutase mimetic. Neurosci Lett 2003; 335: 163-166.
29. Mizuno Y., Ohta S., Tanaka M., Takamiya S., Suzuki K., Sato T., Oya H., Ozawa T., Kagawa Y. Deficiencies in complex I subunits of the respiratory chain in Parkinson''s disease. Biochem Biophys Res Commun .1989; 163: 1450-1455.
30. Dauer W., Kholodilov N., Vila M., Trillat AC., Goodchild R., Larsen KE., Staal R., Tieu K., Schmitz Y., Yuan CA., Rocha M., Jackson-Lewis V., Hersch S., Sulzer D., Przedborski S., Burke R., Hen R. Resistance of -synuclein null mice to the parkinsonian neurotoxin MPTP. Proc. Natl. Acad. Sci. USA. 2002; 99, 14524-14529.
31. Volles M., J. and Lansbury P. T. Jr. Vesicle permeabilization by protofibrillar α-synuclein is sensitive to Parkinson''s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry. 2002; 41, 4595-4602.
32. Lashuel H. A., Hartley D., Petre B. M., Walz T. and Lansbury P. T. Jr. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 2002; 418, 291.
33. Langston J. W., Ballard P., Tetrud J. W. and Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983; 219, 979-980.
34. Sherer TB., Betarbet R. and Greenamyre JT. Environment, mitochondria, and Parkinson''s disease. Neuroscientist. 2002; 8(3): 192-7. Review.
35. Haas RH., Nasirian F., Nakano K., Ward D., Pay M., Hill R. and Shults CW. Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson''s disease. Ann Neurol. 1995; 37: 714-722.
36. Kushnareva Y., Murphy AN. and Andreyev A. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD (P)+ oxidation-reduction state. Biochem J .2002; 368: 545-553.
37. Menegon A., Board P. G., Blackburn A. C., Mellick G. D. and Le Couteur, D. G. Parkinson''s disease, pesticides, and glutathione transferase polymorphisms. Lancet. 1998; 352: 1344-1346.
38.Choi J., Conrad CC., Dai R., Malakowsky CA., Talent JA., Carroll CA., Weintraub ST. and Gracy RW. Vitamin E prevents oxidation of antiapoptotic proteins in neuronal cells. Proteomics. 2003; 3: 73-77.
39. Nicklas WJ., Vyas I. and Heikkila RE. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6- tetrahydr-opyridine. Life Sci. 1985; 36: 2503-2508.
40. Betarbet R., Sherer TB., MacKenzie G., Garcia-Osuna M., Panov AV. andGreenamyre JT. Chronic systemic pesticide exposure reproduces
features of Parkinson’s disease. Nat Neurosci. 2000; 3: 1301—6.
41. Thiruchelvam M., Richfield EK., Baggs RB., Tank AW and Cory-Slechta DA. The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson''s disease J Neurosci. 2000; 20(24):9207-14.
42. Mollace V., Iannone M., Muscoli C., Palma E., Granato T., Rispoli V.,
Nistico R., Rotiroti D. and Salvemini D.The role of oxidative stress in paraquat-induced neurotoxicity in rats: protection by non-peptidyl superoxide dismutase mimetic. Neurosci Lett.2003; 335: 163-166.
43. Mizuno Y., Ohta S., Tanaka M., Takamiya S., Suzuki K., Sato T., Oya H.,Ozawa T. and Kagawa Y. Deficiencies in complex I subunits of the respiratory chain in Parkinson''s disease. Biochem Biophys Res Commun. 1989; 163(3): 1450-5.
44.Schapira AH. Mitochondrial involvement in Parkinson''s disease, Huntington''s disease, hereditary spastic paraplegia and Friedreich''s ataxia. Biochim Biophys Acta.1999; 1410: 159-170.
45.Cardellach F., Marti MJ., Fernandez-Sola J., Marin C., Hoek JB., Tolosa E. and Urbano-Marquez A. Mitochondrial respiratory chain activity in skeletal muscle from patients with Parkinson''s disease. Neurology. 1993; 43(11): 2258-62.
46. Dexter DT., Carter CJ., Wells FR., Javoy-Agid F., Agid Y., Lees A., Jenner P. and Ma rsden CD. Basal lipid peroxidation in substantia nigra is increased in Parkinson''s disease. J Neurochem. 1989; 52: 381-389.
47. Parker Jr WD., Boyson SJ. and Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson''s disease. Ann Neurol. 1989; 26: 719-723.
48. Cardellach F., Marti MJ., Fernandez-Sola J., Marin C., Hoek JB., Tolosa E., Urbano-Marquez A. Mitochondrial respiratory chain activity in skeletal muscle from patients with Parkinson''s disease. Neurology. 1993; 43: 2258-2262.
49. Jenner P. Oxidative mechanisms in nigral cell death in Parkinson''s disease. Mov Disord. 13: 24-34.
50. Floor E. and Wetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem. 1998; 70: 268-275.
51. Kushnareva Y., Murphy AN., Andreyev A. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD (P)+ oxidation-reduction state. Biochem J. 2002; 368: 545-553.
52. Tatton, N. A. and Kish, S. J. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetra- hydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience. 1997; 77, 1037-1048.
53. Hartmann A., Hunot S., Michel PP., Muriel MP., Vyas S., Faucheux BA., Mouatt-Prigent A., Turmel H., Srinivasan A., Ruberg M., Evan GI., Agid Y., Hirsch EC. Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson''s disease. Proc. Natl Acad. Sci. USA 2000; 97, 2875-2880.
54. Viswanath V., Wu Y., Boonplueang R., Chen S., Stevenson FF., Yantiri F., Yang L., Beal MF., Andersen JK. Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson''s disease. J Neurosci. 2001; 21(24): 9519-28.
55. Vila M., Jackson-Lewis V., Vukosavic S., Djaldetti R., Liberatore G., Offen D., Korsmeyer S.J. and Przedborski S. Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyri- dine mouse model of Parkinson''s disease. Proc. Natl. Acad. Sci. USA 2001; 98, 2837-2842.
56. Lichuan Yang, Russell T. Matthews, Jörg B. Schulz, Thomas Klockgether, Andrew W. Liao, Jean-Claude Martinou, John B. Penney, Jr., Bradley T. Hyman, and M. Flint Beal. 1-Methyl- -4-phenyl-1,2,3,6-tetrahydropyride neurotoxicity is attenuated in mice overexpressing Bcl-2. J. Neurosci. 1998; 18, 8145-8152.
57. Xia XG., Harding T., Weller M., Bieneman A., Uney JB. and Schulz JB. Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson''s disease. Proc Natl Acad Sci U S A. 2001;98(18):10433-8.
58. Lei K., Nimnual A., Zong WX., Kennedy NJ., Flavell RA., Thompson CB., Bar-Sagi D., Davis RJ. Thompson, Dafna Bar-Sagi and Roger J. Davis. The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun N-terminal kinase. Mol. Cell Biol. 2002; 22, 4929-4942.
59. Betarbet R., Sherer TB., MacKenzie G., Garcia-Osuna M., Panov AV. and Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson''s disease. Nature Neurosci. 2000; 3, 1301-1306.
60. De Flora S., Bennicelli C., Camoirano A., et al. In vivo effects of N-acetylcysteine on glutathione metabolism and on the biotransformation of carcinogenic and/or mutagenic compounds. Carcinogenesis 1985; 6:1735-1745.
61. De Vries N. and De Flora S. N-Acetyl-l-Cysteine. J Cell Biochem 1993; 17F : S270-S277.
62.Virmani MA., Biselli R., Spadoni A., et al. Protective actions of L-carnitine and acetyl-L-carnitine on the neurotoxicity evoked by mitochondrial uncoupling or inhibitors. Pharmacol Res 1995; 32: 383—389.
63. Langston J. W., Ballard P., Tetrud J. W. and Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983; 219, 979-980.
64. Floor E. and Wetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 1998; 70: 268-275.
65. Aruoma OI., Halliwell B., Hoey BM. and Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 1989; 6:593-597.
66. Hoffer E., Baum Y., Tabak A. and Taitelman U. N-acetylcysteine increases the glutathione content and protects rat alveolar type II cells against paraquat-induced cytotoxicity. Toxicol Lett 1996; 84:7-12.
67. Ando S., Tadenuma T., Tanaka Y., Fukui F., Kobayashi S., Ohashi Y. and Kawabata T. Enhancement of learning capacity and cholinergic synaptic function by carnitine in aging rats. J. Neurosci. Res. 2001. 66, 266-271.
68. Di Lisa F., Bobyleva-Guarriero V., Jocelyn P., Toninello A., Siliprandi N. Stabilising action of carnitine on energy-linked processes in rat liver mitochondria. Biochem Biophys Res Commun 1985; 131: 968—973.
69. Aureli T., Miccheli A., Di Cocco ME., Ghirardi O., Giuliani A., Ramacci MT., Conti F. Effect of acetyl-Lcarnitine on recovery of brain phosphorus metabolites and lactic acid level during reperfusion after cerebral ischemia in the rat─study by 13P- and 1H-NMR spectroscopy. Brain Res 1994; 643: 92—99.
70. Packer L., Roy S. and Sen CK. Alpha-lipoic acid: a metabolic antioxidant and potential redox modulator of transcription Adv. Pharmacol. 1997; 38, 79-101.
71. Kriegstein AR. Cortical neurogenesis and its disorders. Curr Opin Neurol 1996; 9:113—117.
72. Liu J., Head E., Gharib AM., Yuan W., Ingersoll RT., Hagen TM., Cotman CW. and Ames BN. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha -lipoic acid. Proc Natl Acad Sci USA 2002; 99: 2356—2361.
73. Sekiya K. and Okuda H. Selective inhibition of platelet lipoxygenase by baicalein. Biochem. Biophys. Res. Commun. 1982; 105, 1090-1095.
74. Chen CJ., Raung SL., Liao SL. and Chen SY. Inhibition of inducible nitric oxide synthase expression by baicalein in endotoxin/cytokine- stimulated microglia. Biochem Mol Biol Int. 1996; 39(2): 215-25.
75. Gao D., Sakurai K., Katoh M., Chen J., Ogiso T. Inhibition of microsomal lipid peroxidation by biacalein: A possible formation of an iron-baicalein complex. Biochem. Mol. Biol. Int. 1996; 39, 215-225.
76.Hamada H., Hiramatsu M., Edamatsu R. and Mori A. Free radical scavenging action of baicalein. Arch Biochem Biophys. 1993 Oct; 306(1): 261-6.
77. Matsuzaki Y., Kurokawa N., Terai S., Matsumura Y., Kobayashi N. and Okita K. Cell death induced by baicalein in human hepatocellular carcinoma cell lines. Jpn. J. Cancer Res. 1996; 87, 170-177.
78. Zhu M., Rajamani S., Kaylor J., Han S., Zhou F., Fink AL..The flavonoid baicalein inhibits fibrillation of alpha -synuclein and disaggregates existing fibrils. J Biol Chem. 2004; 279(26): 26846-57.
79. Mochizuki H., Goto K., Mori H. and Mizuno Y. Histochemical detection of apoptosis in Parkinson''s disease. J Neurol Sci 1996; 137: 120-123
80. Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 1978; 14:633— 643.
81. Kalivendi SV., Cunningham S., Kotamraju S., Joseph J., Hillard CJ. and Kalyanaraman B.α-Synuclein Up-regulation and Aggregation during MPP+-induced Apoptosis in Neuroblastoma Cells. J Biol Chem. 2004; 279, 15240—15247.
82. Li N., Ragheb K., Lawler G., Sturgis J., Rajwa B., Melendez JA. and Robinson JP. Mitochondrial Complex I Inhibitor Rotenone Induces Apoptosis through Enhancing Mitochondrial Reactive Oxygen Species Production. J Biol Chem. 2003;278(10):8516-25.
83. Sherer TB., Betarbet R., Testa CM., Seo BB., Richardson JR., Kim JH., Miller GW., Yagi T., Matsuno-Yagi A. and Greenamyre JT. Mechanism of Toxicity in Rotenone Models of Parkinson’s Disease. Journal of Neuroscience, 2003, 23(34):10756—10764.
84. Maker HS., Weiss C., Silides DJ. and Cohen G. Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J Neurochem 1981, 36: 589-593.
85. Zhu M., Rajamani S., Kaylor J., Han S., Zhou F. and Fink AL.. The flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils. J Biol Chem. 2004; 279(26): 26846-57.
86. Helen M. Beere. ''The stress of dying'': the role of heat shock proteins in the regulation of apoptosis. J Cell Sci. 2004; 117: 2641-51
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊