跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 01:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施曉婷
研究生(外文):Hsiao-Ting Shih
論文名稱:探討甲型硫辛酸對B16-F1黑色素瘤細胞中eumelanin生合成相關基因表現之影響
論文名稱(外文):Effect of α-Lipoic Acid on Eumelanogenesis Related Gene Expression in B16-F1 Melanoma Cells
指導教授:張菡馨
指導教授(外文):Han-Hsin Chang
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:營養科學研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:132
中文關鍵詞:甲型硫辛酸黑色素TRP1TRP2Mitf
外文關鍵詞:Alpha-lipoic acidmelaninTRP1TRP2Mitf
相關次數:
  • 被引用被引用:1
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
已知TRP1和TRP2是黑色素細胞中eumelanin生成過程之重要酵素,且二者之表現受上游基因Mitf的活化而向上調控。又已知甲型硫辛酸會藉由調控細胞中麩胱甘肽含量,使B16-F1黑色素瘤細胞內外之eumelanin生合成降低,並減少細胞內、外黑色素含量,因此,本實驗主要探討(1)不同濃度甲型硫辛酸處理B16-F1黑色素瘤細胞72小時後,對細胞內、外黑色素生合成之影響。(2)以西方墨點分析法檢測不同濃度甲型硫辛酸處理B16-F1黑色素瘤細胞72小時後,對細胞中eumelanin生合成相關基因,包括TRP1、TRP2、Mitf表現之影響。實驗結果發現:(1)隨著甲型硫辛酸濃度增加,會減少B16-F1黑色素瘤細胞內、外黑色素含量。(2) 400μM甲型硫辛酸之處理會降低B16-F1黑色素瘤細胞中TRP2及Mitf之表現量,然而對TRP1之表現則無明顯影響。顯示甲型硫辛酸可能藉由抑制Mitf的表現,進而抑制下游基因TRP2之表現,使 B16-F1黑色素瘤細胞內、外黑色素含量降低。

It has been confirmed that TRP1 and TRP2 are the important enzymes involved in eumelanogenesis of melanocytes, and the expressions of TRP1 and TRP2 genes are up-regulated by activation of upstream gene, Mitf. Alpha-Lipoic acid decreased eumelanogenesis by regulating the glutathione content in cells, and reduced the intra/ extracellular melanin content of B16-F1 melanoma cells. Therefore, our study was to evaluate (1) the intra/extracellular melanin biosynthesis of B16-F1 melanoma cells when treated with different concentrations of Alpha-lipoic acid at 72 hours, (2) the expressions of eumelanogenesis related genes, including TRP1, TRP2 and Mitf of B16-F1 melanoma cells when treated with different concentrations of Alpha-lipoic acid at 72 hours. Our results has shown that (1) the intra/extracellular melanin content were decreased by increasing the concentrations of Alpha-lipoic acid. (2) 400μM Alpha-lipoic acid also reduced the expressions of TRP2 and Mitf of B16-F1 melanoma cells, but TRP1 expression remained unchanged. The results suggested that Alpha-lipoic acid inhibited the expression of Mitf, and further inhibited the expression of a downstream gene, TRP2, to decrease intra/ extracellular melanin content of B16-F1 melanoma cells.

目 錄
目錄----------------------------------------------------------I
表目錄------------------------------------------------------VII
圖目錄-------------------------------------------------------IV
中文摘要----------------------------------------------------XII
英文摘要---------------------------------------------------XIII
壹、緒論------------------------------------------------------1
一、黑色素生合成步驟------------------------------------------1
二、Eumelanin 生合成相關基因與色素形成之關係------------------5
三、Eumelanin生合成相關之基因表現受α-melanocyte-
stimulating hormone(α-MSH) 及agouti signal protein(ASP)所調控-8
(一)、α-MSH之調控---------------------------------------------8
(二)、ASP之調控-----------------------------------------------9
四、甲型硫辛酸對黑色素生合成及Eumelanin生合成相關基因表現之影響-----------------------------------------------------------12
貳、研究目的-------------------------------------------------14
參、實驗設計與流程-------------------------------------------15
一、實驗設計-------------------------------------------------15
二、實驗流程-------------------------------------------------16
肆、實驗方法-------------------------------------------------17
一、細胞株及細胞培養-----------------------------------------17
二、細胞內、外黑色素量之觀察---------------------------------18
三、細胞計數-------------------------------------------------19
四、細胞內蛋白值之萃取---------------------------------------19
五、蛋白質定量分析-------------------------------------------20
六、SDS-膠體電泳及西方墨點分析-------------------------------21
七、西方墨點分析結果之量化-----------------------------------22
八、分析統計-------------------------------------------------23
伍、實驗結果-------------------------------------------------24
一、繼代培養代數及甲型硫辛酸對B16-F1黑色素瘤細胞生長之影響---24
(一)、繼代培養代數對細胞生長之影響---------------------------24
(二)、甲型硫辛酸對細胞生長之影響-----------------------------25
二、繼代培養代數及甲型硫辛酸對B16-F1黑色素瘤細胞形態之影響---33
(一)、繼代培養代數對細胞形態之影響---------------------------33
(二)、甲型硫辛酸對細胞形態之影響-----------------------------34
三、繼代培養代數及甲型硫辛酸對B16-F1黑色素瘤細胞內黑色素生合成之影響-------------------------------------------------------38
(一)、繼代培養代數對細胞內黑色素含量之影響-------------------38
(二)、甲型硫辛酸對細胞內黑色素含量之影響---------------------39
四、繼代培養代數及甲型硫辛酸對B16-F1黑色素瘤細胞外黑色素生合成之影響-------------------------------------------------------41
(一)、繼代培養代數對細胞外黑色素含量之影響-------------------41
(二)、甲型硫辛酸對細胞外黑色素含量之影響---------------------50
五、B16-F1黑色素瘤細胞內外黑色素含量之關係-------------------56
(一)、繼代培養代數增加時,細胞內外黑色素含量之關係-----------56
(二)、甲型硫辛酸濃度增加時,細胞內外黑色素含量之關係---------56
六、B16-F1黑色素瘤細胞外黑色素含量與細胞生長之關係-----------58
(一)、繼代培養代數增加時,細胞外黑色素含量與細胞生長之關係---58
(二)、甲型硫辛酸濃度增加時,細胞外黑色素含量與細胞生長之關係-59
七、繼代培養代數及甲型硫辛酸對B16-F1黑色素瘤細胞中eumelanin生合成相關基因表現之影響----------------------------------------66
(一)、繼代培養代數對細胞中eumelanin生合成相關基因表現之影響-66
(二)、甲型硫辛酸對細胞中eumelanin生合成相關基因表現之影響---69
八、B16-F1黑色素瘤細胞外黑色素含量與細胞中eumelanin生合
成相關基因表現之關係----------------------------------------87
(一)、繼代培養代數增加時,細胞外黑色素含量與細胞中eumelanin 生合成相關基因表現之關係--------------------------------------87
(二)、甲型硫辛酸濃度增加時,細胞外黑色素含量與細胞中eumelanin 生合成相關基因表現之關係------------------------------------88
陸、討論-----------------------------------------------------93
一、繼代培養代數及甲型硫辛酸對B16-F1黑色素瘤細胞生長之影響---93
(一)、繼代培養代數對細胞生長之影響---------------------------93
(二)、甲型硫辛酸對細胞生長之影響-----------------------------94
二、繼代培養代數及甲型硫辛酸對B16-F1黑色素瘤細胞內、外黑色素生合成與細胞形態之影響-----------------------------------------95
(一)、細胞內黑色素生合成-------------------------------------95
(1)、繼代培養代數對細胞內黑色素生合成之影響------------------95
(2)、甲型硫辛酸對細胞內黑色素生合成之影響-------------------96
(二)、細胞外黑色素生合成------------------------------------97
(1)、繼代培養代數對細胞外黑色素生合成之影響-----------------97
(2)、甲型硫辛酸對細胞外黑色素生合成之影響-------------------98
(三)、細胞形態----------------------------------------------99
(1)、繼代培養代數對細胞形態之影響---------------------------99
(2)、甲型硫辛酸對細胞形態之影響----------------------------100
三、甲型硫辛酸抑制黑色素生合成之作用較細胞老化所降低之黑色素生合成作用明顯----------------------------------------------101
四、繼代培養代數及甲型硫辛酸對B16-F1黑色素瘤細胞中eumelanin生合成相關基因表現之影響--------------------------------------102
(一)、繼代培養代數對細胞中eumelanin生合成相關基因表現之影響-102
(二)、甲型硫辛酸對細胞中eumelanin生合成相關基因表現之影響
之影響------------------------------------------------------103
柒、結論---------------------------------------------------106
捌、參考文獻-----------------------------------------------107
玖、附錄---------------------------------------------------118
一、實驗材料-----------------------------------------------118
二、實驗常用溶液之配製-------------------------------------122
三、冷光螢光影像分析系統量化方式---------------------------127
四、冷光螢光影像分析系統量化結果---------------------------128
表 目 錄
表一、Human melanoma cell line 中tyrosinase 相關基因表現、dopa oxidase 活性及黑色素含量之比較-------------------------------7
表二、繼代培養代數對B16-F1黑色素瘤細胞生長之影響-------------26
表三、繼代培養代數與細胞生長之相關性-------------------------28
表四、甲型硫辛酸對各代數B16-F1黑色素瘤細胞生長之影響---------29
表五、0∼200μM甲型硫辛酸劑量與細胞生長之相關性---------------31
表六、繼代培養代數對B16-F1黑色素瘤細胞外黑色素含量之影響-----47
表七、繼代培養代數與細胞外黑色素含量之相關性-----------------49
表八、甲型硫辛酸對各代數B16-F1 黑色素瘤細胞外黑色素含量之影響---------------------------------------------------------------52
表九、甲型硫辛酸劑量與細胞外黑色素含量之相關性---------------54
表十、繼代培養代數增加時,細胞外黑色素含量與細胞生長之相關性-61
表十一、甲型硫辛酸劑量增加時,細胞外黑色素含量與細胞生長之相關性-----------------------------------------------------------64
表十二、甲型硫辛酸對各代數B16-F1黑色素瘤細胞中eumelanin生合成相關基因表現之影響(目測量化)-----------------------------------72
表十三、繼代培養代數與細胞中eumelanin生合成相關基因表現之相關性-----------------------------------------------------------74
表十四、繼代培養代數增加時,細胞中TRP2-U與TRP2-L表現之相關性-76
表十五、繼代培養代數增加時,細胞中Mitf-U與Mitf-L表現之相關性
-------------------------------------------------------------78
表十六、甲型硫辛酸濃度與細胞中eumelanin生合成相關基因表現之相關性-----------------------------------------------------------81
表十七、甲型硫辛酸濃度增加時,細胞中TRP2-U與TRP2-L表現之相關性--------------------------------------------------------------83
表十八、甲型硫辛酸濃度增加時,細胞中Mitf-U與Mitf-L表現之相關性--------------------------------------------------------------85
表十九、繼代培養代數增加時,細胞外黑色素含量與細胞中eumelanin生合成相關基因表現之相關性-------------------------------------89
表二十、甲型硫辛酸濃度增加時,細胞外黑色素含量與細胞中eumelanin生合成相關基因表現之相關性-----------------------------------91
表二十一、甲型硫辛酸對各代數B16-F1黑色素瘤細胞中eumelanin生合成相關基因表現之影響(冷光螢光影像分析系統量化結果)------------130
圖 目 錄
圖一、黑色素之運送--------------------------------------------3
圖二、黑色素生合成途徑----------------------------------------4
圖三、α-MSH及ASP對melanogenic gene之調控---------------------11
圖四、繼代培養代數對B16-F1黑色素瘤細胞生長之影響(表二量化圖)-27
圖五、繼代培養代數與細胞生長之相關性-------------------------28
圖六、甲型硫辛酸對各代數B16-F1黑色素瘤細胞生長之影響
(表四量化圖)-------------------------------------------------30
圖七、0∼200μM甲型硫辛酸劑量與細胞生長之相關性---------------32
圖八、甲型硫辛酸對年輕代數B16-F1黑色素瘤細胞形態之影響-------35
圖九、甲型硫辛酸對中年代數B16-F1黑色素瘤細胞形態之影響-------36
圖十、甲型硫辛酸對老年代數B16-F1黑色素瘤細胞形態之影響-------37
圖十一、甲型硫辛酸對各代數B16-F1黑色素瘤細胞內黑色素含量之
影響---------------------------------------------------------40
圖十二、甲型硫辛酸處理24小時對各代數B16-F1黑色素瘤細胞培養液顏色之影響-----------------------------------------------------44
圖十三、甲型硫辛酸處理48小時對各代數B16-F1黑色素瘤細胞培養液顏色之影響-----------------------------------------------------45
圖十四、甲型硫辛酸處理72小時對各代數B16-F1黑色素瘤細胞培養液顏色之影響-----------------------------------------------------46
圖十五、繼代培養代數對B16-F1黑色素瘤細胞外黑色素含量之影響(表六量化圖)------------------------------------------------------48
圖十六、繼代培養代數與細胞外黑色素含量之相關性---------------49
圖十七、甲型硫辛酸對各代數B16-F1黑色素瘤細胞外黑色素含量之影響(表八量化圖)-------------------------------------------------53
圖十八、甲型硫辛酸劑量與細胞外黑色素含量之相關性-------------55
圖十九、甲型硫辛酸處理72小時對各代數B16-F1黑色素瘤細胞內外黑色素含量之影響(圖十一與圖十四合併比較)-------------------------57
圖二十、繼代培養代數對B16-F1黑色素瘤細胞外黑色素含量及細胞生長之影響(圖十五與圖七合併比較)---------------------------------60
圖二十一、繼代培養代數增加時,細胞外黑色素含量與細胞生長之相關性-----------------------------------------------------------62
圖二十二、甲型硫辛酸對B16-F1黑色素瘤細胞外黑色素含量及細胞生長之影響(圖十七與圖九合併比較)---------------------------------63
圖二十三、甲型硫辛酸劑量增加時,細胞外黑色素含量與細胞生長之相關性---------------------------------------------------------65
圖二十四、甲型硫辛酸處理後,各代數B16-F1黑色素瘤細胞中eumelanin生合成相關基因之表現-----------------------------------------71
圖二十五、繼代培養代數對B16-F1黑色素瘤細胞中eumelanin生合成相關基因表現之影響(表十二量化圖)---------------------------------73
圖二十六、繼代培養代數與細胞中eumelanin生合成相關基因表現之相關性-----------------------------------------------------------75
圖二十七、繼代培養代數增加時,細胞中TRP2-U與TRP2-L表現之相關性--------------------------------------------------------------77
圖二十八、繼代培養代數增加時,細胞中Mitf-U與Mitf-L表現之相關性--------------------------------------------------------------79
圖二十九、甲型硫辛酸對各代數B16-F1黑色素瘤細胞中eumelanin生合成相關基因表現之影響(表十二量化圖)-----------------------------80
圖三十、甲型硫辛酸濃度與細胞中eumelanin生合成相關基因表現之相關性-----------------------------------------------------------82
圖三十一、甲型硫辛酸濃度增加時,細胞中TRP2-U與TRP2-L表現之相關性-----------------------------------------------------------84
圖三十二、甲型硫辛酸濃度增加時,細胞中Mitf-U與Mitf-L表現之相關性-----------------------------------------------------------86
圖三十三、繼代培養代數增加時,細胞外黑色素含量與細胞中eumelanin生合成相關基因表現之相關性-----------------------------------90
圖三十四、甲型硫辛酸濃度增加時,細胞外黑色素含量與細胞中eumelanin生合成相關基因表現之相關性--------------------------92
圖三十五、繼代培養代數對B16-F1黑色素瘤細胞中eumelanin生合成相關基因表現之影響(冷光螢光影像分析系統量化結果)(表二十一量化圖)---------------------------------------------------------------131
圖三十六、甲型硫辛酸對各代數B16-F1黑色素瘤細胞中eumelanin生合成相關基因表現之影響(冷光螢光影像分析系統量化結果)(表二十一量化圖)---------------------------------------------------------132

Abdel-Malek Z, Swope VB, Palles J, Krug K and Nordlund JJ. (1992) Mitogenic, melanogenic and camp responses of cultured neonatal human melanocytes to commonly used mitogens. J Cell Physiol. 150:416-425.
Abdel-Malek Z, Swope VB, Suzuki I, Akcali C, Harriger MD, Boyce ST, Urabe K and Haring VJ. (1995) Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc Natl Acad Sci. USA. 92:1789-1793.
Aberdam E, Bertolotto C, Sviderskaya EV, de Thillot V, Hemesath TJ, Fisher DE, Bennett DC and Ortonne JP. (1998) Involvement of microphthalmia in the inhibition of melanocyte lineage differentiation and of melanogenesis by agouti signal. J Biol Chem. 273(31): 19560-19565.
Aroca P, Garcia-Borron JC, Solano G, Lozano J. (1990) Regulation of distal mammalian melanogenesis. I. Partial purification and characterization of dopa chrome converting factor : dopa chrome tautomerase. Biochemica et biophysica acta. 1035:266-275.
Aroca P, Urabe K, Kobayashi T, Tsukamoto K and Hearing VJ. (1993) Melanin biosynthesis patterns following hormonal stimulation. J Biol Chem. 268: 25650-25655.
Benathan M. (1996) Modulation of 5-S-Cysteinyldopa formation by tyrosinasse activity and intracellular thios in human melanoma cells. Melanoma Res. 6:183-189.
Bertolotto C, Busca R, Abbe P, Bille K, Aberdam E, Ortonne JP and Ballotti R. (1998) Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Molecular and Cellular Biology. 18(2):694-702.
Bennett D. (1991) Colour genes, oncogenes and melanocyte differentiation. J Cell Sci. 98:135-139.
Blanchard SG, Harris CO, Ittoop ORR, Nichols JS, Parks, D. J, Truesdale AT and Wilkison WO. (1995) Agouti antagonism of melanocortin binding and action in the B16F10 murine melanoma cell line. Biochemistry 34: 10406-10411.
Busse E, Zimmer G, Schopohl B, Kornhuber B. (1992) Influence of alpha-lipoic acid on intracellular glutathione in vitro and in vivo. Arzneimittelforschung. 42: 829-831.
Burchill SA, Thody AJ and Ito S. (1986) Melanocyte-stimulating hormone, tyrosinase activity and the regulation of eumelanogenesis and phaeomelanogenesis in the hair follicular melanocytes of the mouse. J Endocrinol. 109: 15-21.
Burchill SA, Bennett DC, Holmes A, Thody AI. (1991) Tyrosinase experession and melanogenesis in melanotic and amelanotic B16 mouse melanoma cells. Pathobiology. 59: 335-339.
Buscà R, Bertolotto C, Ortonne JP and Ballotti R. (1996) Inhibition of the phosphatidylinositol 3-kinase/p70(S6)-kinase pathway induces B16 melanoma cell differentiation. J Biol Chem. 271(50):31824-30.
Buscà R, Bertolotto C, Abbe P, Englaro W, Ishizaki T, Narumiya S, Boquet P, Ortonne JP and Ballotti R. (1998) Inhibition of Rho is required for cAMP-induced melanoma cell differentiation. Mol Biol Cell. 9(6): 1367-1378.
Buscà R and Ballotti R. (2000) Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 13: 60-69.
Bradford MM.(1976)A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72: 248-254.
Carreira S, Dexter TJ, Yavuzer U, Easty DJ and Goding CR. (1998) Brachyury-related transcription factor Tbx2 and repression of the melanocyte-specific TRP-1 promoter. Mol Biol Cell.18: 5099-5108.
Celia JC, Fransico S, Takeshi K, Hearing VJ, Jose AL, and Garcia-Borron JC. (1994) A new enzymatic function in the melanogenic pathway. J Biol Chem. 269(27): 17993-18001.
Cone RD, Lu D, Vage DI, Klungland, H, Boston BA, Chen WB, Orth DN, Pouton C and Kesterson RA. (1996) The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog Horm Res.51: 287-317.
del Marmol V, Solano F, Sels A, HueZ G, Libert A, Lrjeune F, and Ghanem G. (1993) Glutathione depletion increases tyrosinase activity in human melanoma cells. J Invest Dermatol. 101: 871 -874.
del Marmol V, Ito S, Bouchard B, Libert A, Wakamatsu K, Ghanem G. and Solano F. (1996) Cysteine deprivation promotes eumelanogenesis in human melanoma cells. J Invest Dermatol. 107(5): 698-702.
del Marmol V, Ito S, Jackson I, Vachtenheim J, Berr P, Ghanem G, Morandini R, Wakamatsu K and Huez G. (1993) TRP-1 expression correlates with eumelano- genesis in human pigment cells in culture. FEBS 327(3): 307-310.
Eberle J, Garbe C, Wang N and Orfanos CE. (1995a) Incomplete expression of the tyrosinase gene family (tyrosinase, TRP1 and TRP2) in human malignant melanoma cells in vitro. Pigment Cell Res. 8:307-313.
Eberle J, Wagner M and Macneil S. (1998) Human melanoma cell lines show little relationship between expression of pigment genes and pigmentary behavior in vitro. Pigment Cell Res. 11:134-142.
Edgar AJ and Bennett JP. (1999) Inhibition of dendrite formation in mouse melanocytes transiently transfected with antisense DNA to myosin Va. Journal of Anatomy. 195 ( Pt 2):173-84.
Furumura M, Sakai C, Abdel-Malek Z, Barsh GS and Hearing VJ. (2001) The interaction of agouti signal protein and melanocyte stimulating hormone to regulate melanin formation in mammals. Pigment Cell Res. 9(4): 191-203
Furumura M, Sakai C, Potterf SB, Vieira WD, Barsh GS and Hearing VJ. (1998) Characterization of genes modulated during pheomelano- genesis using differential display. Proc Natl Acad Sci. USA 95: 7374 -7378.
Furumura M, Potterf SB, Toyofuku K, Matsunaga J, Muller J and Hearing VJ. (2001) Involvement of ITF2 in the transcriptional regulation of melanogenic genes. J Biol Chem. 276(30): 28147-28154.
Galibert MD, Yavuzer U, Dexter J and Goding CR. (1999) Pax3 and regulation of the melanocyte-specific tyrosinase-related protein-1 promoter. J Biol Chem. 274: 16894-26900.
Geschwind II, Huseby RA and Nishioka R. (1972) The effect of melanocyte- stimulating hormone on coat color in the mouse. Rec Prog Horm Res. 28:91-130.
Han D, Tritshler HJ, Packer L. (1995) Alpha-lipoic acid increases intracellular glutathione in human T-lymphocyte Jurkat cell line. BBRC. 207: 258-264.
Han D, Handelman G, Marcocci L, Sen CK, Roy S, Kobuchi H, Tritshler HJ, Flohe L, Packer L. (1997) Lipoic acid increases de synthesis of cellular glutathione by improving cystine utilization. Biofactors. 9:1-18.
Hearing, VJ., and Jimenez, M. (1987) Mammalian tyrosinase--the critical regulatory control point in melanocyte pigmentation. Int J Biochem. 19: 1141-1147.
Hearing VJ, and King RA. (1993) In pigmentation and Pigmentary Disorders (Levine N ed), pp.3-32, CRC Press, Boca Raton, FL.
Hunt G, Kyne S, Wakamatsu K, Ito S and Thody AJ. (1995) Nle4Dphe7α-melanocyte-stimulating hormone increase the eumelanin: Phaeomelanin ratio in cultured human melanocyte. J Invest Dermatol. 104: 83-85.
Hearing V, King R. (1993) Determinant of skin color: melanocyte and melanization. In: Levine N(ed.). Pigmentation and Pigmentary Disorder. CRC Press, Boca Raton, FL, pp 3-32.
Ho SY. (2002) 探討甲型硫酸辛對B16-F1黑色素細胞中pheomelanin生合成之影響,中山醫學大學營養科學研究所碩士論文。
Ito S. (1993) High-performance liquid chromatography analysis of eumelanin and pheomelanin in melanogenesis control. J Invest Dermatol. 100(2Suppl): 166S-171S.
Ito S, Wakamatsu K, Ozeki H. (2000) Chemical analysis of melanins and its application to the study of the regulation of melanogenesis. Pigment Cell Res.13(Suppl.8) :103-109.
Ito S. (2003) A chemist’s view of melanogenesis. Pigment Cell Res. 16:230-236.
Imokawa GMS. (1989) Analysis of initial melanogenesis included tyrosinase transfer and melanosaome through interrupted melanization by glutathione. J Invest Dermatol. 93: 100-107.
Jackson JI, Cambers DM, Tsukamoto K, Copeland N, Gilbert DJ, Jenkins NA, and Hearing VJ. (1992) A second tyrosinase related protein, TRP2, maps to and is mutated at the mouse slaty locus. EMBO J. 11:527-535.
Jime´nez-Cervantes C, Solano F, Kobayashi T, Urabe K, Hearing VJ, Lozano JA and Garcý´a-Borro´n JC. (1994) A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). J Biol Chem. 269:17993 -18000.
Jimbow K, Alena F, Dixon W and Hara H. (1992) Regulatory factors of pheo- and eumelanogenesis in melanogenic compartments. Pigment Cell Res. (Suppl. 2) : 36-42.
Jimbow K, Lee SK, King MG, Hara H, Chen H, Dakour J, and Marusyk H. (1993) Melanin pigments and melanosomal proteins as differentiation markers unique to normal and meoplastic melanocytes. J Invest Dermatol. 100:259S-268S.
Johansson M, TakasaKi A, Lenner L, Arstrand K and Kagedal B. (2002) Quantitative relationships between pigment-related mRNA and biochemical melanoma markers in melanoma cell lines. Melanoma Res. 12(3): 193-200.
Kameyama K, Montague PM and Hearing VJ. (1988) Expression of melanocyte stimulating hormone receptors correlates with mammalian pigmentation, and can be modulated by interferons. J Cellular Physiol. 137(1): 35-44.
Kameyama K, Takemura T, Hamada Y, Sakai C, Kondoh S, Nishiyama S, Urabe K and Hearing VJ. (1993) Pigment production in murine melanoma cells is regulated by tyrosinase, tyrosinase-related protein 1 (TRP1), DOPAchrome tautomerase (TRP2), and a melanogenic inhibitor. J Invest Dermatol. 100(2): 126-31.
Kameyama K, Sakai C, Kuge S, Nishiyama S, Tomita Y, Ito S, Wakamatsu K and Hearing VJ. (1995) The expression of tyrosinase, tyrosinase-related proteins 1 and 2 (TRP1 and TRP2), the silver protein, and a melanogenic inhibitor in human melanoma cells of differing melanogenic activities. Pigment Cell Res. 8(2): 97-104.
Kagan VE, Shvedova A, Serbinova E, Khan S, Swanson C, Powell R, Packer L. (1992) Dehydrolipic acid : A universal antioxidant both in the membrane and in the aqueous phase. Biochemical pharmacology. 44: 1637-1649.
Kobayashi T, Imokawa G, Bennett DC and Hearing VJ. (1998) Tyrosinase stabilization by Tyrp1 (the brown locus protein). J Biol Chem. 273(48): 31801-31805.
Kobayashi T, Vieira WD, Potterf B, Sakai C, Imokawa G and Hearing VJ. (1995) Modulation of melanogenic protein expression during the switch from eu- to pheomelanogenesis. J Cell Sci. 108 ( Pt 6): 2301-2309.
Korner AM and Pawelek JM. (1982) The biosynthesis of mammalian melanin. American Scientist. 70(2): 136-145.
Konrad D, Somwar R, Sweeney G, Yaworsky K, Hayashi M, Ramlal T and Klip A. (2001) The antihyperglycemic drug alpha-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: potential role of p38 mitogen- activated protein kinase in GLUT4 activation. Diabetes. 50(6):1464-71.
Kuzumaki T, Matsuda A, Wakamatsu K, Ito S, Tshikawa K. (1993) Eumelanin biosynthesisi is regulated by coordinate expression of tyrosinase and tyrosinase — related protein — 1 genes. Exp cell Res. 207:33-40.
Lamoreux ML, Zhou BK, Rosemblat, S and Orlow SJ. (1995) The pinkeyed dilution protein and the eumelanin/pheomelanin switch: in support of a unifying hypothesis. Pigment Cell Res. 8: 263-270.
Lamoreux ML, Wakamatsu K and Ito S. (2001) Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin. Pigment Cell Res. 14(1): 23-31.
Lein PJ and Higgins D. (1989) Laminin and a basement membrane extract have different effects on axonal and dendritic outgrowth from embryonic rat sympathetic neurons in vitro. Dev Biol. 136(2): 330-45.
Lin CB, Babiarz L, Liebel F, Rotdon Price E, Kizoulis M, Gendimenico GJ, Fisher DE and Seiberg M. (2002) Modulation of Microphthalmia -associated transcription factor gene expression alters skin pigmentation. J Invest Dermatol. 119: 1130-1340.
Lu D, Willard D, Patel IR, Kadwell S, Overton L, Kost T, Luther M, Chen W, Woychik RP, Wilkison WO, and Cone RD. (1994) Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 371: 799-802.
Miller MW, Duhl DMJ, Vrieling H, Cordes SP, Ollmann MM and Barsh GS. (1993) Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the lethal yellow mutation. Genes Dev. 7:454-467.
Ollmann MM, and Barsh GS. (1999) Down-regulation of melanocortin receptor signaling mediated by the amino terminus of Agouti protein in Xenopus melanophores. J Biol Chem. 274:15837-15846.
Ou P, Tritschler Hj, Wolff SP. (1994) Thioctic (Lipoic) acid: Atherapeutic metal- chelating antioxidant? Biochemical pharmacology. In press.
Ozeki H, Ito S, Wakamatsu K and Ishiguro I. (1997) Chemical characterization of pheomelanogenesis starting form dihydroxy- phenylalanin or tyrosine and cysteine. Effects of tyrosinase and cysteine concentrations and reaction time. Biochimica et biophysica acta. 1336(3): 539-548.
Potterf SB, Virador V, Wakamatsu K, Furumura M, Santis C, Ito S, Hearing VJ. (1999) Cysteine transport in melanosomes from murine melanocytes. Pigment Cell Res. 12(1): 4-12.
Price ER, Ding H-F, Badalian T, Bhattacharya S, Takemoto C, Yao T-P, Hemesath TJ and Fisher DE. (1998) Lineage-specific signaling in melanocytes. C-kit stimulation recruits p300/CBP to microphthalmia. J Biol Chem. 273: 17983 -17986.
Price ER, Horstmann MA, Wells AG, Weilbaecher KN, Takemoto CM, Landis MWand Fisher DE. (1998) alpha-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. J Biol Chem. 273(49): 33042-33047.
Prota G, Lamoreux ML, Muller J, Kobayashi T, Napolitano A, Vincensi MR, Sakai C and Hearing VJ. (1995) Comparative analysis of melanins and melano- somes produced by various coat color mutants. Pigment Cell Res. 8(3): 153-63.
Prota G. (1992) Melanins and melanogenesis. Academic Press, New York. p1-290.
Riley PA.(1988) Radicals in melanin biochemistry. Annals of the New York Academy of Science. 551: 111-120.
Scott BC, Arouma OI, Evans PJ, O’Neill C, Van Der Vliet A, Cross CE, Tritschler H and Halliwell B. (1994) Lipoic acid and dihydroxylipoic acids as antioxidant: A critical evaluation. Free Rad Res.20: 119-133.
Scott MC, Wakamatsu K, Ito S, Kadekaro AL, Kobayashi N, Groden J, Kavanagh R, Takakuwa T, Virador V, Hearing VJ and. Abdel-Malek ZA. (2002) Human melanocortin 1 receptorvariants, receptor function and melanocyte response to UV radiation. J Cell Sci.115, 2349-2355.
Sakai C, Ollmann M, Kobayashi T, Abdel-Malek Z, Muller J, Vieira WD, Imokawa G, Barsh GS and Hearing VJ. (1997) Modulation of murine melanocyte function in vitro by agouti signal protein. EMBO J. 16(12): 3544-3552.
Sarangarajan R, Boissy RE. (2001) Tyrp1 and oculocutaneous albinism type 3. Pigment Cell Res. 14(6): 437-44.
Sigel H, Prijs B, McCormick DB, Shih J CH. (1978) Stability of bindary and ternary complexs of alpha-lipoate derivatives with Mn2+, Cu2+, and Zn2+ in solution. Arch Biochem Biophys. 187: 208-214.
Siegrist W. and Eberle AN. (1986) In situ melanin assay for MSH using mouse B16 melanoma cells in culture. Anal Biochem. 159: 191-197.
Siegrist W, Willard DH, Wilkison WO and Eberle AN. (1996) Agouti protein inhibits growth of B16 melanoma cells in vitro by acting through melanocortin receptors. Biochem Biophys Res. Commun. 218: 171-175.
Shosuke I. (1993) High-performance liquid chromatography analysis of eu- and pheomelanin in melanogenesis control. J Invest Dermatol. 100:166S-171S.
Slominski A, Constantino R and Moellmann G. (1991) Molecular mechanisms governing melanogenesis in hamster melanomas: relative abundance of tyrosinase and catalase-B (gp 75). Anti-cancer Res. 11:257-262.
Smit NPM, Meulen HVD, Koerten HK, Kolb RM, Mommaas AM, Lentjes EG WM and Pavel S. (1997) Melanogenesis in cultured melanocytes can be substantially influenced by L-tyrosinase and L-cystein. J Invest Dermatol. 109: 796-800.
Spritz RA, Ho L, Furumura M and Hearing VJ. (1997) Mutational analysis of copper binding by human tyrosinase. J Invest Dermatol. 109: 207-212.
Strum RA, O’Sullivan BJ, Box NF, Smith AG, Smit SE, Puttick ER, Parsons PG, Dunn IS. (1995) Chromosomal structure of the human TYRP 1 and TYRP 2 loci and comparison of the tyrosinase — related protein gene family. Genomics. 29: 24-34.
Suzuki YJ, Tsuchiya M, Packer L. (1991) Thioctic acid and dihydrolipic acid are novel antioxidants which interact with reaction live oxygen species. Free Rad Res Comms. 15: 255-263.
Suzuki YJ, Tsuchiya M, Packer L. (1993) Antioxidant activities of dihydrolipoic acid and its structural homologus. Free Rad Res Comms. 18: 115-122.
Suzuki I, Tada A, Ollmann MM, Barch GS, Im S, Lamoreux ML, Hearing VJ, Nordlund JJ and Abdel-Malek ZA. (1997) Agouti signal protein inhibits melanogenesis and the response of human melanocyte toα-melanotropin. J Invest Dermatol. 108: 838-842.
Tamate HB and Takeuch T. (1984) Action of the e locus of mice in the response of phaeomelanic hair follicles to α-melanocyte-stimulating hormone in vitro. Science 224: 1241-1242.
Takeshi K, Kazunori U, Alison W, Celia JC, Genji I, Timothy B, Francisco S, Garcia-Borron JC and Hearing VJ. (1994) Tyrosinase related protein 1 (TRP 1) function as a DHICA oxidase in melanin biosythesis. EMBO J. 13(24): 5818-5825.
Takejiro K, Ayako M, Kazumasa W, Shosuke I, and Kiichi I. (1993) Eumelanin biosynthesis ud regulated by coordinate expression of tyrosinase — related protein — 1 genes. Exp Cell Res. 207:33-40.
Tsukamoto K, Jackson IJ, Urabe K, Montague P and Hearing VJ. (1992) A second tyrosinase-related protein, TRP 2, is a melanogenic enzyme termed DOPA chrome tautomerase. EMBO J. 11:519-524.
Vachtenheim J and Duchon J. (1996) Melanogenic factors: regulation of gene expression. Sbornik Lekarsky. 97(1):41-7.
Verastegui C, Bertolotto C, Bille K, Abbe P, Ortonne J-P and Ballotti R. (1999) TFE3 and TFEB as transcriptional activators of tyrosinase and TRP1 genes. Pigment Cell Res. Suppl 7:144.
Vijayasaradhi S, Bouchard B and Houghton A. (1990) The melanoma antigen gp75 is the human homologue of the mouse b (brown) locus gene product. J Exp Med. 171:1375-1380.
Voisey J, Kelly G and Dall AV. (2003) Agouti signal protein regulation in human melanoma cells. Pigment Cell Res. 16:65-71.
Wakamatsuk K, Ito S, and Horikoshi T. (1991) Normal values of uninary excretion and serum concentration of 5-S-cysteinyldopa and 6 — hydroxy — 5 —methoxyindole — 2 —carboxylic acid, biochemical markers of melama progression. Melanoma Res. 1(2): 141-7.
Willard DH. (1995)Agouti structure and function: characterization of a potent α-melanocyte stimulating hormone receptor antagonist. Biochemistry. 34:12341-12346.
Yang YK, Dickinson C, Zeng Q, Li JY, Thompson DA and Gantz I. (1999) Contribution of melanocortin receptor exoloops to agouti-related protein binding. J. Biol Chem. 274:14100-14106.
Yokoyama K, Suzuki H, Yasumoto K, Tomita Y and Shibahara S. (1994) Molecular cloning of a cDNA coding for human DOPAchrome tautomerase/ tyrosinase-related protein-2. Biochim Biophys Acta. 1217: 317-321.
Zhao H, Eling DJ, Medrano EE and Boissy RE. (1996) Retroviral infection with human tyrosinase-related protein-1 (TRP-1) cDNA upregulates tyrosinase activity and melanin synthesis in a TRP-1- deficient melanoma cell line. J Invest Dermatol. 106(4): 744-52.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top