跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/06 15:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張家賓
研究生(外文):Jia-Ben Chang
論文名稱:微玻璃珠強化矽膠複合材料之機械性能研究
論文名稱(外文):Analysis of Mechanical Properties of Micro-Glass Particle Reinforced Silicone Composite
指導教授:龔皇光龔皇光引用關係
指導教授(外文):Huang-Kuang Kung
學位類別:碩士
校院名稱:正修科技大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:83
中文關鍵詞:複合材料微玻璃珠矽膠
外文關鍵詞:compositemicro-glasssilicone
相關次數:
  • 被引用被引用:1
  • 點閱點閱:407
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
微玻璃珠(Micro-glass particle)加強材與矽膠(Silicone)基材之複合材料,具有成型時間短、質量輕、強度增強的效果,本文即針對此一材料,改變不同基材含量和加強材顆粒大小,利用實驗的方法探討其機械性能。
選用不同顆粒(50μm、150μm、300μm)與不同比例(5%、10%、20%、30%)所組成的顆粒強化複材進行實驗,由拉伸實驗求得彈性係數(E)、極限強度(σult)與極限應變(εult)。由粗糙度實驗求得中心線平均粗糙度(Ra),高溫氧化實驗得知複材在高溫下的重量減少百分比,硬度實驗求得複材的蕭氏硬度值(Hs),再利用電子顯微鏡SEM觀察試片破壞情形以及複材的成分分析。
由實驗結果得知,極限強度(σult)與彈性係數(E)和微珠含量相關,含量越高則強度越強、彈性係數(E)越大,當含量增加時極限應變(εult)則越小,改變微珠顆粒大小則不影響其結果。在硬度方面提高微珠含量,蕭氏硬度(Hs)也相對提高,改變顆粒大小則無影響,在粗糙度部分中心線平均粗糙度(Ra)隨著微珠百分比增加變大,而相同百分比中,微珠顆粒較大者Ra值也較大。在70度的高溫老化溫度中,添加微珠之複材重量保持性優於不添加微珠之複材。由SEM觀察下微珠之完整性良好、表面粗糙與Silicone之結合性佳,成分分析下微珠與Silicone結合後並無發生化學變化,也無產生其他雜質。

he composite material of enhanced micro-glass particles and silicone has some unique features that can be formed in shorter time with lighter weight and extraordinary consistency. In that article, by changing the amount of each component in percentage and the size of the particles are studied the physical attributes of the composites.
Various size of particles (50μm, 150μm, 300μm) and various amount of component (5%, 10%, 20%, 30% ) are applied in the experiment. From tensile test the value of elasticity modulus(E), ultimate stress(σult)are obtained, and ultimate strain(εult). From roughness test, the value of roughness average(Ra)are acquired. In aging test, from calculation of the value of composites under high temperature, obtained the ratio of weight decreasing in percentage. the value of shore hardness(Hs)are obtained from hardness test. Finally the components of the composites and the condition of destruction of types are analyzed by using scanning electron microscope(SEM).
The results have indicated that ultimate stress(σult)and elasticity modulus(E)are interrelated to the amount of Micro-glass particles. The more the amount of particles is, the higher intensity of ultimate stress(σult)and the larger value of Elasticity modulus(E) there goes; On the contrary, the smaller value of ultimate strain(εult)it turns out. The result are the same even though size of particles is changed. In the test of Hardness; the more the amount of particles is, the larger value of shore hardness(Hs)it goes. again there has no effect to the results by changing the size of particles. In the roughness test, the more the amount of particles in percentage, the larger value of roughness average(Ra)it is. If the condition of the amount of particles remains the same, The value of roughness average(Ra)increase with the size of particles comes with larger. In the aging test with 70 degrees in celsius, the composites contained with micro-glass particles perform better in weight keeping than the composites without micro-glass particles. The condition of the conjunction of the particles and silicone in the composites had no conflicts and was formed in perfect shape under the observation of SEM. By analyzing the content of composites, there is no chemical reaction occurred neither any impurity was produced after binding the particles with silicone.

目錄 I
表目錄 IV
圖目錄 V
摘要 X
英文摘要 XI
第一章 緒論 1
1-1 前言 1
1-2 複合材料概述 1
1-3 研究方向 3
1-4 文獻回顧 4
1-5 組織與章節 6
第二章 相關理論 7
2-1 KERNER理論 7
2-2 KERNER EXPANSION COEFFICIENT理論 8
2-3 HALPIN-TSAI 理論 9
2-4 HOMOGENIZATION 理論 9
2-5 PHILLIPS 理論 9
第三章 實驗 15
3-1 拉伸實驗 15
3-1.1拉力實驗 16
3-1.2壓力實驗 21
3-1.3實驗注意事項 22
3-2 硬度實驗 23
3-3表面粗糙度實驗 25
3-4 高溫氧化實驗 27
3-5 電子顯微鏡(SEM)觀察 28
第四章 實驗結果與討論 36
4-1拉伸實驗 36
4-1.1 拉力實驗 36
4-1.2 壓力實驗 47
4-1.3 電子顯微鏡觀察試片(SEM) 50
4-2 硬度實驗 54
4-3 表面粗糙度實驗 58
4-4 高溫氧化實驗 61
第五章 結論與建議 63
5-1結論 63
5-2未來發展 64
參考文獻 66
附錄A 拉伸實驗圖 70
附錄B 實驗器材操作方法 74
B-1拉力實驗操作程序 74
B-2壓力實驗操作程序 76
附錄C 表面粗糙度圖 78
附錄D 蕭式硬度圖 79

[1] Gupta, N. and Woldesenbet, E, “Effect of Radius Ratio Parameter of Cenopheres on The Compressive Properties of The Syntactic Foams”
[2] Gupta, N. “Effect of Wall Thickness of Cenospheres on Compressive Properties of Syntactic Foams”
[3] Chow, T. S. “Elastic Moduli of Filled Polymers:The Effect of Particle Shape”, Journal of Applied Physics. 1977, Vol. 48, pp. 4072~4075.
[4] Chow, T. S. “Effect of Particle Shape at Finite Concentration on Thermal Expansion of Filled Polymers”, Journal of Applied Physics. 1978, Vol. 16, pp. 967-970.
[5] Christensen Richard, M.“A Critical Evaluation for a Class of Micromechanics models”, Journal of Mech. Phys. Solids. 1990, Vol. 38, pp. 379-404.
[6] Zimmerman Robert, W. “Elastic Moduli of a Solid Containing Spherical Inclusions”, Journal of Mechanics of Materials, 1991, Vol. 12, pp. 17-24.
[7] Kerner, E.H. “The Elastic and Themo-Elastic Properties of Composites Media” , Proc. Royal Society-London, 1956, Vol.69 ,No.808.
[8] Sato,Y. and Furukawa, J. “A Molecular Theory of Filler Reinforcement Based on the Conception of Interal Deformation” Rubber Chem. Tech, 1962, Vol.35 ,No.857.
[9] Halpin, J.C. and Tsai, S.W. “Effect of Enviromental Factors on Composite Materials”, AFML-TR. 1967, pp. 67-423.
[10] Hill, R. “Self-Consistent Mechanics of Composite Materials” , Journal of the Mechanics and Physics of Solids, 1965, Vol. 13,pp. 213-222.
[11] Budiansky, B. “On the Elastic Moduli of Some Heterogeneous Materials”, Journal of the Mechanics and Physics of Solids, 1965, Vol. 13,pp. 223.
[12] Mori, T. and Tanaka “Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions”, Acta Metallurgica et Materialia, 1977, Vol. 21,pp. 571.
[13] McLaughlin, R. ”A Study of the Differential Scheme for Composite Materials”, International Journal of Engineering Science, 1977,Vol. 15, pp. 237.
[14] Norris, A.N. “A Differential Scheme for the Effective Moduli of Composites”, Mechanics of Materials, 1985, Vol.4, pp. 99
[15] Lene, F. and Leguillon, D. " Homogenized Constitutive Law for A Partially Cohesive Composite Material," International Journal Solids and Structures, 1982, Vol. 18, pp. 443-458.
[16] Jansson, S. “Homogenized Nonlinear Constitutive Properties and Local Stress Concentrations for Composites with Periodic Internal Structure”, International Journal Solids and Structures, 1992 Vol. 29 , pp. 2181-2200.
[17] Kung, H. K. and Skontorp, A. and Wang, S.S. “High-Temperature Physical and Chemical Aging in Carbon-Fiber Reinforced Polyimide Composites: Experiments and Theory”, in Recent Advances in Composite Materials, S.R. White, H.T. Hahn and W.F. Jones, Ed., ASME MD, 1995, Vol56, pp. 193-202.
[18] Lu, X. Kung, H.K. and Wang, S.S. “A Homogenization Prediction of Temperature-Dependent Effective Thermoelastic Properties and Microscopic Thermal Stresses in High-Temperature Polymer Composites”, the Ninth Proceeding of the American Society for Composites, 1994, Vol.9, pp. 265-274.
[19] Shibuya, Y. and Wang , S.S. “A Homogenization Theory for Fiber Composites with Imperfect Interface at Elevated Temperatures”,Proceedings of the Sixth Japan-U.S. Conference on Composite Materials, 1992, pp. 188-197.
[20] Shibuya, Y. and Wang, S.S. “Nonlinear Behavior of Metal-Matrix Fiber Composite with Damage on Interface”,Trans. of Japan Society of Mechanical Engineering, 1994, Vol. 60, No. 569, pp. 153-158.
[21] Kwon, Y. W. Lee J. H. and Liu, C. T. “Study of Damage and Crack in Particulate Composites, ”Composites Part B, 1998, 29B,pp. 443-450.
[22] Fu, Shao-Yun Xu, Guanshui Mai, Yiu-Wing “On The Elastic Modulus of Hybrid Particle/Short-Fiber/Polymer Composites” Composites Part B 2002, Vol. 33, pp. 291-299.
[23] Tszeng, T. C. “The Effects of Particle Clustering on The Mechanical Behavior of Particle Reinforced Composites” Composites Part B,1998, 29B,pp. 299-308.
[24] Liu, G. R. “A Step-By-Step Method of Rule-Of-Mixture of Fiber-And Particle-Reinforced Composite Materials” Composite Structure, 1998, Vol. 40,pp. 313-322.
[25] Miwa, Minour, Takeno, Akiyoshi, Hara, Katsumi. and Watanabe, Akira. “Volume Fraction and Temperature Dependence of Mechanical Properties of Silicone Rubber Particulate/Epoxy Blend ” Composites, 1995, vol. 26,pp. 371-377.
[26] Naganuma, T. Kagawa, Y. “ Effect of Particle Size on The Optically Transparent Nanometer-Order Glass Particle-Dispersed Epoxy Matrix Composits “ Composites Science and technology, 2002, Vol.62, pp.1187-1189.
[27] Phillips, M.G. Compos. Sci. Technol, 1992, Vol43, 95.
[28] 林進誠, ”材料實驗” 高立圖書有限公司, 民國80年8月.
[29] 曾富鑫, “空心顆粒複合材料之機械性能與破壞分析”,國立中山大學碩士論文, 民國83年6月.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top