跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡蒨傑
研究生(外文):Chien-Chieh Hu
論文名稱:自由體積及氣體-高分子交互作用對高分子薄膜氣體吸附與傳輸性質之影響
論文名稱(外文):Effect of free volume and penetrant-polymer interaction on gas sorption and transport properties of polymeric membrane
指導教授:賴君義賴君義引用關係阮若屈
指導教授(外文):Juin-Yih LaiJuin-Yih Lai
學位類別:博士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:208
中文關鍵詞:溶解係數高分子薄膜擴散係數自由體積
外文關鍵詞:Polymeric membraneDiffusivitySolubilityFree volume
相關次數:
  • 被引用被引用:15
  • 點閱點閱:568
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
自由體積與氣體-高分子交互作用是決定高分子薄膜氣體分離性能最重要的參數,欲開發高性能氣體分離薄膜必須釐清自由體積、氣體-高分子交互作用與高分子薄膜氣體分離性能之相互關係,因此本論文首先探究鑄膜用溶劑、熱處理、高分子組成對玻璃態高分子薄膜自由體積、氣體吸附與傳輸性質之影響,接著探究氣體-高分子交互作用對薄膜氣體吸附與傳輸性質之影響,最後則討論在自由體積相同下薄膜表面交聯對薄膜氣體透過之影響。
鑄膜溶劑性質對同材質緻密PMMA薄膜FFV、玻璃轉移溫度、氣體透過係數與擴散係數之影響是本研究的重心,鑄膜使用之溶劑沸點較高則所製備薄膜玻璃轉移溫度較低但FFV較大,薄膜氣體透過係數隨著FFV增加大幅增高,固定PMMA使用不同溶劑製備薄膜的氣體透過係數最大相差近六倍,薄膜氣體透過係數增加與薄膜FFV增加趨勢一致,薄膜自由體積增加主要改變薄膜氣體擴散係數,而對氣體吸附影響不大。
鑄膜溶劑性質對高分子鏈堆疊的影響使薄膜有不同自由體積,一般認為在高於Tg溫度熱處理後,無論使用何種溶劑製膜相同膜材薄膜之FFV應該相似,本研究實驗結果證實經過熱處理之不同溶劑製備之薄膜的FFV明顯不同,熱處理提高薄膜之Tg同時降低PMMA薄膜之FFV。薄膜之氣體透過係數與溶解係數均因薄膜熱處理而下降,熱處理PMMA薄膜的FFV越高氣體透過係數越大,由於分子鏈局部塑化造成氣體壓力大於15 atm時薄膜的氣體透過係數有隨壓力增加而增大的現象,分子鏈局部塑化對薄膜氣體擴散係數的影響並不大。
除了鑄膜用溶劑及熱處理會影響高分子薄膜之氣體分離行為外,高分子之組成亦是影響薄膜氣體分離行為的重要參數,與氣體交互作用很小的norbornene含量不同使COC有不同分子結構,本研究使用組成不同COC薄膜探討氣體交互作用相似時分子組成對薄膜FFV、氣體吸附與傳輸性質之影響,COC薄膜中norbornene含量增加薄膜之密度降低但是玻璃轉移溫度與FFV提高,分子組成不同造成薄膜之FFV增加配合適當的分子鏈堆疊可同時提昇薄膜的氣體透過係數與選擇係數,COC薄膜之氣體溶解係數隨氣體操作壓力增高而下降(符合dual mode sorption之行為),FFV越高之薄膜氣體吸附量越大,薄膜之FFV與C’H呈線性關係。
為了釐清氣體-高分子交互作用與薄膜氣體透過性質之關係,carbonyl group density不同的緻密薄膜被系統性探討,高分子之carbonyl group density增高會增加薄膜氣體溶解係數,carbonyl group與氣體分子之交互作用會抑制氣體分子在薄膜中的擴散。carbonyl group density與Langmuir affinity constant呈正比線性關係。
為探討薄膜自由體積不改變之情況下,薄膜表面交聯對薄膜氣體氣體透過性質之影響,本研究引用電漿進行薄膜表面交聯處理,薄膜表面交聯降低薄膜氣體透過係數但是增加薄膜氣體選擇係數,研究中亦發現薄膜表面交聯可改善薄膜抵抗冷凝性氣體塑化的性能。
鑄膜用溶劑、熱處理、高分子組成,官能基、薄膜表面交聯對高分子薄膜氣體分離性質均有顯著影響,本研究針對這些影響因子所做基本探討,有助於更清楚釐清高分子薄膜氣體分離機制。
Abstract
Free volume and penetrant-polymer interaction were important parameters to control gas separation properties of the membrane. To develop high performance gas separation membranes, the free volume and penetrant-polymer interaction dependence of gas separation properties of the membrane need to be established. Initially, effects of casting solvent, heat treatment, and polymer composition on free volume, gas sorption, and transport properties of glassy polymeric membranes were estimated in this thesis. Subsequently, the relationship between penetrant-polymer interaction and gas separation properties of membrane was investigated. This study finally reports the effect of surface crosslinking of membrane, same FFV, on gas permeation of polymeric membrane.
This work reports glass transport temperature, fractional free volume (FFV), permeability, and diffusivity of Poly(methyl methacrylate) (PMMA) membranes, yielding information regarding the effect of casting solvent property on transport mechanisms in PMMA membranes cast from five different solvents. It was found that the free volumes of the membranes followed the order of the boiling points of the solvents from which they were cast. Nevertheless, the trend of Tg was very opposite of FFV. An increase in FFV increased the gas permeability but apparently did not increase the gas solubility. The results indicated that the gas diffusivity in the membrane was strongly affected by the fractional free volume of the membrane.
Membranes with different free volume result from polymer chain packing caused by casting solvent properties. It was believed that annealing above the Tg of membrane made membranes prepared by dry casting from different solvents had similar FFV. In fact, the FFV of annealed membranes prepared by casting from different solvents still had obviously difference. Annealing increased the Tg of membrane but decreased the FFV of membrane. The annealing of membrane was discovered to simultaneously decrease both permeability and solubility. Penetrant permeability in annealed membrane increase with increasing FFV. The plasticizing effect of CO2 on PMMA is well known, but we found that the permeability of oxygen also increased slightly with the operating upstream pressure. The solubility of oxygen initially decreased and then soon increased with the upstream pressure. It was suspected that the increase of gas solubility by pressure was due to slight plasticization occurring in the edge of inter-chain aligning region near the self-coiling domain. The partial plasticization increased gas solubility and permeability but had little effect on the gas diffusivity.
Polymer composition was an important parameter affect gas separation properties of dense membrane besides casting solvent and heat treatment. Cyclic olefin copolymer (COC) containing 40-66mol% norbornene, small interaction with penetrant, had different structure. The effect of molecular composition change of COC membrane on FFV, gas sorption, and transport properties was investigated in this work. Glass transition temperature and FFV increase with increasing norbonene content, but we found that the density of membrane decrease with increasing norbonene content. COC membrane combines increasingly FFV with suitable chain packing simultaneously increase permeability and selectivity. The solubility of COC membranes increase with increasing FFV, and the gas sorption behavior of COC membrane obey the dual-sorption model. It is found that there is a linear relationship between FFV and Langmuir capacity constant.
The object of present work was to search for the relationships between the carbonyl group density and transport properties in the membrane. The intrinsic gas transport properties, permeation, diffusion, and sorption in a series of dense membranes with various carbonyl group densities were investigated. It was found that solubility is improved by increasing the carbonyl group density on the polymer chains of various polymers and this effect becomes more pronounced with increasing penetrant condensability. It was observed that the carbonyl group in the membrane decreased the gas diffusivity because it might have a strong interaction with the penetrant gas molecules. In this study, a direct relationship was found between the carbonyl group density and Langmuir affinity constant.
In this report, effect of surface crosslinking of membrane on gas permeation was studied from the viewpoint of FFV of membrane was not change. Argon plasma was used to create surface crosslinking of poly(methyl methacrylate) (PMMA) membrane. It was found that membrane surface crosslinking decreased permeability but increased selectivity. Additionally, the plasticizing effect of permeant (CO2) on the surface crosslinked PMMA membrane is significantly reduced.
The factors of casting solvent, heat treatment, polymer composition, functional group, and surface crosslinking obviously affect the gas separation performance of polymeric membrane. The basic study of effect upon above factors could help us to clarify the gas separation mechanism of polymeric membrane.
目錄

中文摘要 Ⅰ
英文摘要 Ⅳ
致謝 Ⅶ
目錄 Ⅷ
符號說明 ⅩⅣ
圖索引 ⅩⅧ
表索引 ⅩⅩⅣ

第一章 緒論
1-1 薄膜分離技術之回顧 1
1-2 氣體分離薄膜之發展 3
1-3 高分子薄膜製備與改質 5
1-3-1 平板薄膜之製備 5
1-3-2 管狀薄膜之製備 6
1-3-3 高分子薄膜之改質 7
1-4 薄膜之氣體透過理論 8
1-4-1 多孔性薄膜之氣體透過理論 9
1-4-2 緻密薄膜之氣體透過理論 13
1-5 玻璃態高分子薄膜之氣體傳輸 16
1-5-1 雙重吸附模型(dual-sorption model) 16
1-5-2 Dual mobility model 17
1-5-3 Langmuir-BET吸附模式 18
1-5-4 自由體積理論與塑化 19
1-6 研究背景 22
1-7 研究目的 31

第二章 實驗
2-1 材料 34
2-2 實驗儀器 36
2-3 實驗方法 38
2-3-1 PMMA緻密薄膜之製備 38
2-3-2 PC薄膜之製備 39
2-3-3 PPO薄膜之製備 39
2-3-4 COC薄膜之製備 39
2-3-5 PMMA薄膜電漿表面處理 40
2-3-6 機械性質測試 41
2-3-7 熱性質分析 41
2-3-8 全反射式傅氏轉換紅外線光譜儀測試 41
2-3-9 原子力顯微鏡觀察 42
2-3-10 薄膜密度量測 42
2-3-11 薄膜氣體透過測試 43
2-3-12 薄膜氣體恆溫吸附測試 45

第三章 鑄膜用溶劑對高分子量PMMA薄膜自由體積、氣體吸附及傳輸之影響
3-1 研究目的 47
3-2 前言 47
3-3 結果與討論 49
3-3-1 鑄膜中之殘餘溶劑 49
3-3-2 鑄膜用溶劑對薄膜FFV之影響 49
3-3-3 鑄膜溶劑對薄膜氣體透過之影響 53
3-3-4 薄膜氣體吸附 57
3-3-5 薄膜氣體傳輸性質 61
3-4 結論 64

第四章 熱處理對高分子量PMMA薄膜自由體積、氣體吸附及傳輸之影響
4-1 研究目的 65
4-2 前言 65
4-3 結果與討論 67
4-3-1 熱處理對薄膜FFV之影響 67
4-3-2熱處理對薄膜FFV與氣體透過之影響 70
4-3-3 熱處理對薄膜氣體吸附之影響 77
4-3-4 FFV和壓力對熱處理薄膜氣體透過係數比之影響 83
4-3-5 FFV對氣體擴散係數之影響 86
4-3-6 分子量對PMMA薄膜氣體傳輸性質之影響 88
4-4 結論 92

第五章 高分子組成對COC薄膜自由體積、氣體吸附及傳輸之影響
5-1 研究目的 93
5-2 前言 93
5-3 結果與討論 96
5-3-1 Norbornene含量變化對薄膜物理性質之影響 96
5-3-2 COC薄膜之氣體傳輸 98
5-3-3 COC薄膜之氣體吸附 106
5-4 結論 115

第六章 氣體-薄膜交互作用對薄膜自由體積、氣體吸附及傳輸之影響
6-1 研究目的 116
6-2 前言 116
6-3 結果與討論 118
6-3-1 薄膜之物理性質 118
6-3-2 薄膜之氣體透過 120
6-3-3 薄膜氣體吸附分析 127
6-4 結論 138

第七章 表面交聯對PMMA薄膜氣體傳輸性質之影響
7-1 研究目的 139
7-2 前言 139
7-3 結果與討論 141
7-3-1 PMMA薄膜之表面交聯 141
7-3-2 電漿處理對PMMA薄膜表面形態與機械性質之影響 144
7-3-3 表面交聯對PMMA薄膜氣體透過性質之影響 147
7-4 結論 154

第八章 結論與未來展望
8-1 結論 155
8-2 未來展望 157
參考文獻 159
圖索引

第一章
Fig. 1-1 Schematic diagrams of the principal types of membranes.
Fig. 1-2 Knudsen’s tube model. Reprinted from Separation Science and Technology, p. 75, by courtesy of Marcel Dekker, Inc.
Fig. 1-3 Specific volume of an amorphous polymer as a function of the temperature.

第二章
Fig. 2-1 Chemical structure of cyclic olefin copolymer.
Fig. 2-2 Dense membrane casting process.
Fig. 2-3 The Schematic diagram of the plasma reactor system.
Fig. 2-4 Schematic diagram of density measurement apparatus.
Fig. 2-5 Apparatus of gas permeation.
Fig. 2-6 Apparatus of gas sorption.

第三章
Fig. 3-1 Thermogravimetric analysis of PMMA membranes cast from different solvents (PMMA-D cast from dichloromethane; PMMA-T cast from THF; PMMA-E cast from ethylacetate; PMMA-B cast from butylacetate; PMMA-M cast from MIBK).
Fig. 3-2 Effect of pressure on the permeabilities of nitrogen (PN2) in PMMA membranes at 35℃.
Fig. 3-3 Effect of pressure on the permeabilities of oxygen (PO2) in PMMA membranes at 35℃.
Fig 3-4 Effect of pressure on the permeabilities of carbon dioxide (PCO2) in PMMA membranes at 35℃.
Fig. 3-5 Pressure dependence of the solubility coefficient of nitrogen (SN2) in PMMA membranes at 35℃.
Fig. 3-6 Pressure dependence of the solubility coefficient of oxygen (SO2) in PMMA membranes at 35℃.
Fig. 3-7 Pressure dependence of the solubility coefficient of carbon dioxide (SCO2) in PMMA membranes at 35℃.

第四章
Fig. 4-1 Molecular chain conformation model of PMMA membranes.

Fig. 4-2 Effect of FFV on the permeabilities (P) of heat treatment PMMA membranes at 35℃.
Fig. 4-3 Effect of pressure on the permeabilities of helium (PHe) in heat treatment PMMA membranes at 35℃.
Fig. 4-4 Effect of pressure on the permeabilities of oxygen (PO2) in heat treatment PMMA membranes at 35℃.
Fig. 4-5 Effect of pressure on the permeabilities of nitrogen (PN2) in heat treatment PMMA membranes at 35℃.
Fig. 4-6 Effect of pressure on the permeabilities of carbon dioxide (PCO2) in heat treatment PMMA membranes at 35℃.
Fig. 4-7 Effect of FFV on the gas solubilities (S) of heat treatment PMMA membranes at 35℃.
Fig. 4-8 Sorption isotherms of nitrogen (SN2) in heat treatment PMMA membranes at 35℃.
Fig. 4-9 Sorption isotherms of oxygen (SO2) in heat treatment PMMA membranes at 35℃.
Fig. 4-10 Sorption isotherms of carbon dioxide (SCO2) in heat treatment PMMA membranes at 35℃.
Fig. 4-11 Effect of pressure on the permeability ratio of heat treatment PMMA membranes at 35℃.
Fig. 4-12 Effect of FFV on the effective diffusivity of heat treatment PMMA membranes.
Fig. 4-13 Effect of PMMA molecular weight on the carbon dioxide permeability (PCO2) of PMMA membranes.
Fig. 4-14 Effect of PMMA molecular weight on the carbon dioxide solubility (SCO2) of PMMA membranes.

第五章
Fig. 5-1 The effect of upstream pressure on helium permeability (PHe) for COC membranes at 35oC.
Fig 5-2 The effect of upstream pressure on nitrogen permeability (PN2) for COC membranes at 35oC.
Fig. 5-3 The effect of upstream pressure on oxygen permeability (PO2) for COC membranes at 35oC.
Fig 5-4 The effect of upstream pressure on carbon dioxide permeability (PCO2) for COC membranes at 35oC.
Fig. 5-5 Sorption isotherms of nitrogen (CN2) for COC membranes at 35oC.
Fig. 5-6 Sorption isotherms of oxygen (CO2) for COC membranes at 35oC.
Fig. 5-7 Sorption isotherms of carbon dioxide (CCO2) for COC membranes at 35oC.
Fig. 5-8 Plot of Langmuir capacity constant, C’H vs. FFV for COC membranes.
Fig. 5-9 Comparison of O2/N2 separation performance for COC copolymer and various traditional polymeric materials used in gas separation membrane.

第六章
Fig. 6-1 The effect of upstream pressure on helium permeability (PHe) for various membranes at 35oC.
Fig. 6-2 The effect of upstream pressure on nitrogen permeability (PN2) for various membranes at 35oC.
Fig. 6-3 The effect of upstream pressure on oxygen permeability (PO2) for various membranes at 35oC.
Fig. 6-4 The effect of upstream pressure on carbon dioxide permeability (PCO2) for various membranes at 35oC.
Fig. 6-5 Sorption isotherms of nitrogen (CN2) for various membranes at 35oC.
Fig. 6-6 Sorption isotherms of oxygen (CO2) for various membranes at 35oC.
Fig. 6-7 Sorption isotherms of carbon dioxide (CCO2) for various membranes at 35oC.
Fig. 6-8 Plot of Langmuir capacity constant, C’H, vs. FFV for various membranes.
Fig. 6`-9 Langmuir affinity constant, b, of membranes as a function of carbonyl group density.

第七章
Fig. 7-1 A comparison of ATR-FTIR spectrum of PMMA membranes.
Fig. 7-2 Thermogravimetric analyze of PMMA membranes treated with argon plasma.
Fig. 7-3 AFM image of the top surface of the PMMA membranes: (a) original membrane; (b) plasma-treated membrane obtained by 100W plasma treatment for 10min.
Fig. 7-4 CO2 permeabilities at 35℃ for PMMA membrane treated with argon plasma.
Fig. 7-5 CO2 permeabilities at 35℃ for PMMA membrane treated with argon plasma.
Fig. 7-6 Helium permeabilities at 35℃ for PMMA membranes treated with argon plasma.
表索引

第三章
Table 3-1 Physical properties of the casting solvents used for the preparation of the PMMA membrane
Table 3-2 Physical properties of PMMA membranes cast from different solvents (without heat treatment during membrane desolvent)
Table 3-3 O2/N2 ideal selectivity of PMMA membranes at 35℃
Table 3-4 Oxygen and nitrogen diffusivity and solubility in PMMA membranes at 35℃

第四章
Table 4-1 Physical properties of the PMMA (M.W.=996000)
membranes
Table 4-2 Permeabilities a and ideal selectivities of PMMA membrane at 35℃
Table 4-3 Solubilities and solubility selectivities of PMMA membrane at 35℃

第五章
Table 5-1 Physical properties of COC membranes
Table 5-2 Mechanical properties of COC membranes
Table 5-3 Pure gas permeabilities, diffusivities and solubilities at 4atm and 35oC
Table 5-4 Ideal selectivities, diffusivity selectivities, and solubility selectivities for COC membranes at 4 atm and 35oC
Table 5-5 Dual mode parameters for COC membranes at 35oC

第六章
Table 6-1 Physical properties and helium permeability of PMMA, PC, COC, and PPO membranes
Table 6-2 Pure gas permeability, diffusivity and solubility at 10atm and 35oC
Table 6-3 Ideal selectivity, diffusivity selectivity, and solubility selectivity for various membranes at 10atm and 35oC
Table 6-4 Dual mode parameters for various membranes at 35oC
Table 6-5 Parameters of DD and DH for various membranes

第七章
Table 7-1 Mechanical properties of PMMA membranes treated with 100W argon plasma
Table 7-2 Summary of the roughness of the top surface of the PMMA membrane treated with 100W argon plasma
Table 7-3 Gas permeability and selectivity of PMMA membranes treated with argon plasma
參考文獻
1.M. Mulder, Basic principles of membrane technology, Kluwer Academic Publishers, Netherlands, 1997.
2.T. Matsuura, Synthetic membranes and membrane separation processes, CRC Press, Florida, 1994.
3.S. Leob, S. Sourirajan, Sea water demineralization by means of an osmotic membrane, Adv. Chem. Ser., 38 (1962) 117.
4.R. W. Baker, Membrane technology and applications, McGraw-Hill Companies, California, 2000.
5.P. Vandeweerdt, H. Berghamans, Temperature-concentration behavior of solution polydisperse, atactic poly(methyl methacrylate) and its influence on the formation of amorphous, microporous membranes, Macromolecules, 24 (1991) 3547.
6.R. H. Mehta, D. A. Madsen, D. S. Kalika, Microporous membranes based on poly(ether ether ketone) via thermally-induced phase separation, J. Membr. Sci., 107 (1995) 93.
7.F. C. Lin, D. M. Wang, J. Y. Lai, Asymmetric TPX membranes with high gas flux, J. Membr. Sci., 110 (1996) 25.
8.J. Y. Lai, M. J. Liu, K. R. Lee, Polycarbonate membrane prepared via a wet phase inversion method for oxygen enrichment from air, J. Membr. Sci., 86 (1994) 103.
9.A. Morisato, K. Ghosal, b. D. Freeman, R. T. Chern, J. C. Alvarez, J. G. de la Campa, A. E. Lozano, J. de Abajo, Gas separation properties of aromatic polyamides containing hexafluoroisoproylidene groups, J. Membr. Sci., 104 (1995) 231.
10.M. R. Pixton, D. R. Paul, Gas transport properties of polyarylates part I: connector and pendant group effect, J. Polym. Sci. Polym. Phys. 33 (1995) 1135.
11.J. Zhang, Q. Sun, X. Hou, Influence of the silane segment on the gas permeability in aromatic polyesters from phenolphthalein, Macromolecules, 26 (1993) 7176.
12.J. Y. Lai, G. J. Wu. TPX/silicone blend membrane for oxygen enrichment, J. Appl. Polym. Sci., 34 (1987) 559.
13.J. S. Chiou, D. R. Paul, Gas permeation in misble blends (methyl methacrylate) with bisphenol chloral polycarbonate, J. Appl. Polym. Sci., 33 (1987) 2935.
14.S. H. Chen, J. Y. Lai, polycarbonate/ (N,N’-dialicylidene ethylene diamine) Cobalt(Ⅱ) complexed membrane for gas separation, J. Appl. Polym. Sci., 59 (1996) 1129.
15.E. Tsuchida, H. Nishide, M. Ohyanogi, H. Kawakami, Facilitated transport of molecular oxygen in the membranes of polymer-coordinated Cobalt schiff base complexes, Macromolecules, 20 (1987) 1907.
16.J. M. Levasalmi, T. J. Mccarthy, Gas permeability of surface-selectivity chlorinated poly(4-methyl-1-1pentene), Macromolecules, 28 (1995) 1733.
17.J. Csernica, D. H. Rein, R. F. baddour, R. E. Cohen, Modification of polystyrene/polybutadiene blocl copolymer films by chemical reaction with bromine and effect on gas permeability, Macromolecules, 24 (1991) 3612.
18.J. Y. Lai, S. L. Wei, Preparation of vinylpyridine irradiation-grafted polymer (4-methyl-pentene-1) membrane for oxygen enrichment, J. Appl. Polym. Sci., 32 (1986) 5736.
19.M. Y. Teng, K. R. Lee, D. J. Liaw, Y. S. Lin, J. Y. Lai, Plasma deposition of acrylamide onto novel aromatic polyamide membrane for pervaporation, Eur. Polym. J., 36 (2000) 663.
20.M. L. Steen, L. Hymas, E. D. Havey, N. E. Capps, D. G. Castner, E. R. Fisher, Low temperature plasma treatment of asymmetric polysulfone membranes for permanent hrdrophilic surface modification, J. Membr. Sci., 188 (2001) 97.
21.K. S. Houston, D. H. Weinkauf, F. F. Stewart, Gas transport characteristics of plasma treated poly(dimethylsiloxane) and polyphosphazene membrane materials, J. Membr. Sci., 205 (2002) 103.
22.R. E. Kesting, A. K. Fritzsche, Polymeric gas separation membranes, John Wiely &Sons, INC, New York, 1993.
23.W. R. Vieth, J. M. Howell, H. J. Hsieh, Dual sorption theory, J. Membr. Sci., 1 (1976) 177.
24.D. R. Paul, W. J. Koros, Effect of partially immobilization sorption on permeability and diffusion time lag, J. Polym. Sci. Polym. Phys., 14 (1976) 675.
25.S. H. Chen, R. C. Ruaan, J. Y. Lai, Sorption and transport mechanism of gases in polycarbonate membranes, J. Membr. Sci., 134 (1997) 143.
26.T. A. Barbari, Dual-mode free volume model for diffusion of gas molecules in glassy polymers, J. Polym. Sci. Polym. Phys., 35 (1997) 1737.
27.T. A. Barbair, On the amount of free volume in gas-polymer mixture, J. Polym. Sci. Polym. Phys., 31 (1993) 501.
28.H. Higuchi, R. Simha, Free volume quantities and gas diffusion properties at low temperatures, Macromolecules, 29 (1996) 3030.
29.J. Y. Park, D. R. Paul, Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method, J. Membr. Sci., 125 (1997) 23.
30.A. Thran, G. Kroll, F. Faupel, Correlation between fractional free volume and diffusivity of gas molecules in glassy polymers, J. Polym. Sci. Polym. Phys., 37 (1999) 3344.
31.V. P. Shantarovich, Z. K. Azamatova, Y. A. Novikov, Y. P. Yampolskii, Free-volume distribution of high permeability membrane materials probed by positron annihilation, Macromolecules, 31 (1998) 3963.
32.K. Tanaka, T. Kawai, H. Kita, K.-I. Okamoto, Y. Ito, Correlation between gas diffusion coefficient and positron annihilation lifetime in polymers with rigid polymer chains, Macromolecules, 33 (2000) 5513.
33.G. C. Eastmond, J. H. Daly, A. S. McKinnon, R. A. Pethrich, Poly(ether imide)s: correlation of positron annihilation lifetime studies with polymer structure and gas permeability, Polymer, 40 (1999) 3605.
34.G. H. Dai, Y. C. Jean, Free-volume distributions of polymers by positron annihilation spectroscopy: further experience in using CONTIN for continuous lifetime distributions, Nuc. Inst. Meth. Phys. Res. B, 99 (1995) 357.
35.D. Cangialosi, H. Schut, A. van Veen, S. J. Picken, Positron annihilation lifetime spectroscopy for measuring free volume during physical aging of polycarbonate, Macromolecules, 36 (2003) 142.
36.V. P. Shantarovich, I. B. Kevdina, Y. P. Yampolskii, A. Y. Alentive, Positron annihilation lifetime study of high and low free volume glassy polymers: effects of free volume sizes on the permeability and permselectivity, Macromolecules, 33 (2000) 7453.
37.A. Y. Alentive, Y. P. Yampolskii, Free volume model and tradeoff relations of gas permeability and selectivity in glassy polymers, J. Membr. Sci., 165 (2000) 201.
38.A. Singh-Ghosa, W. J. Koros, Energetic and entropic contributions to mobilityu selectivity in glassy polymers for gas separation membranes, Ind. Eng. Chem. Res., 38 (1999) 3647.
39.A. Singh, W. J. Koros, Significance of entropic selectivity for advanced gas separation membranes, Ind. Eng. Chem. Res. 35 (1996) 1231.
40.G. Härtel, T. Püschel, Permselectivity of a PA6 membrane for the separation of a compressed CO2/H2 gas mixture at elevated pressures, J. Membr. Sci., 162 (1999) 1.
41.S. S. Dhingra, E. Marand, Mixed gas transport study through polymeric membranes, J. Membr. Sci, 141 (1998) 45.
42.E. S. Sanders, W. J. Koros, Sorption of CO2, C2H4, N2O and their binary mixtures in poly(methyl methacrylate), J. Polym. Sci. Polym. Phys., 24 (1986) 175.
43.E. S. Sander, W. J. Koros, H. B. Hopfenberg, V. T. Stannett, Pure and mixed gas sorption of carbon dioxide and ethylene in poly(methyl methacrylate), J. Membr. Sci., 18 (1984) 53.
44.T. C. Merkel, R. P. Gupta, B. S. Turk, B. D. Freeman, Mixed-gas permeation of syngas components in poly(dimethylsiloxane) and poly(1-trimethylsilyl-1-propyne) at elevated temperatures, J. Membr. Sci., 191 (2001) 85.
45.M. J. Thundyil, Y. H. Jois, W. J. Koros, Effect of permeate pressure on the mixed gas permeation of carbon dioxide and methane in a glassy polyimide, J. Membr. Sci., 152 (1999) 29.
46.J. R. Fried, D. K. Goyal, Molecular simulation of gas transport in poly(1-(trimethylsilyl-1-propyne), J. Polym. Sci. Polym. Phys., 36 (1998) 519.
47.E. Tocci, E. Bellacchio, N. Russo, E. Drioli, Diffusion of gases in PEEKs membranes: molecular dynamics simulations, J. Membr. Sci., 206 (2002) 389.
48.J. R. Fried, M. Sadat-Akhavi, J. E. Mark, Molecular simulation of gas permeability: poly(2,6-dimethyl-1,4-phenylene oxide), J. Membr. Sci., 149 (1998) 115.
49.M. Al-Masri, H. R. Kricheldorf, D. Fritsch, New polyimides for gas separation. 1. polyimides derived from substituted terphenylenes and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride, Macromolecules, 32 (1999) 7853.
50.I. Kress, A. Usenko, J. Springer, V. Privalko, Gas transport properties of soluble poly(amide imide)s, J. Polym. Sci. Polym. Phys., 37 (1999) 2183.
51.B. Kruczek, T. Matsuura, Effect of metal substitution of high molecular weight sulfonated polyphenylene oxide membranes on their gas separation performance, J. Membr. Sci., 167 (2000) 203.
52.L. S. Teo, C. Y. Chen, J. F. Kuo, The gas transport properties of amine-containing polyurethane and poly(urethane-urea) membranes, J. Membr. Sci., 141 (1998) 91.
53.X. G. Jian, Y. Dai, L. Zeng, R. X. Xu, Application of poly(phthalazinone ether sulfone ketone)s to gas membrane separation, J. Appl. Polym. Sci., 71 (1999) 2385.
54.Z. Wang, T. Chen, J. Xu, Novel poly(aryl ether ketone)s containing various pendant groups. II. gas-transport properties, J. Appl. Polym. Sci., 64 (1997) 1725.
55.H. J. Lehermeire, J. R. Dorgan, J. D. Way, Gas permeation properties of poly(lactic acid), J. Membr. Sci., 190 (2001) 243.
56.Z. K. Xu, C. Dannenberg, J. Springer, S. Banerjee, G. Maire, Novel poly(arylene ether) as membranes for gas separation, J. Membe. Sci., 205 (2002) 23.
57.A. Singh, K. Ghosal, B. D. Freeman, A. E. Lozano, J. G. de la Campa, J. de Abajo, Gas separation properties of pendant phenyl substituted aromatic polyamides containing sulfone and hexafluoroisopropylidene groups, Polymer, 40 (1999) 5715.
58.A. Morisato, I. Pinnau, Synthesis and gas permeation properties of poly(4-methyl-2-pentyne), J. Membr. Sci. 121 (1996) 243.
59.J. Fang, H. Kita, K. I. Okamoto, Gas permeation properties of hyperbranched polyimide membranes, J. Membr. Sci., 182 (2001) 245.
60.V. I. Bondar, B. D. Freeman, I. Pinnau, Gas transport properties of poly(ether-b-amide) segmented block copolymer, J. Polym. Sci. Polym. Phys., 38 (2000) 2051.
61.A. Y. Alentiev, Y. P. Yampolskii, V. P. Shantarovich, S. M. Nemser, N. A. Platé, High transport parameters and free volume of perfluorodioxole copolymers, J. Membr. Sci., 126 (1997) 123.
62.S. Hietala, E. Skou, F. Sundholm, Gas permeation properties of radiation grafted and sulfonated poly-(vinylidene fluoride) membranes, Polymer, 40 (1999) 5567.
63.J. H. Kim, S. Y. Ha, Y. M. Lee, Gas permeation of poly(amide-6-b-ethylene oxide) copolymer, J. Membr. Sci. 190 (2001) 179.
64.R. J. Feng, W. Z. Shi, X. O. Li, Gas permeation properties of copolyetherimide based on 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride, Eur. Polym. J., 38 (2002) 339.
65.T. Nakagawa, T. Nishimura, A. Higuchi, Morphology and gas permeability in copolyimides containing polydimethylsiloxane block, J. Membr. Sci., 206 (2002) 149.
66.T. C. Merkel, V. Bondar, K. Nagai, B. D. Freeman, Y. P. Yampolskii, Gas sorption, diffusion, and permeation in poly(2,2-bis(triflouromethyl)-4,5-difluoro-1,3-dioxole-co-tetraf;uoroethylene), Macromolecules, 32 (1999) 8427.
67.H. B. Pare, C. K. Kim, Y. M. Lee, Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes, J. Membr. Sci., 204 (2002) 257.
68.J. Li, S. Wang, K. Nagai, T. Nakagawa, A. W-H Mau. Effect of polyethyleneglycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) blend membranes, J. Membr. Sci., 138 (1998) 143.
69.M. H. Kim, J. H. Kim, C. K. Kim, Y. S. Kang, H. C. Park, J. O. Won, Control of phase separation behavior of PC/PMMA blends and their application to the gas separation membranes, J. Polym. Sci. Polym. Phys., 37 (1999) 2950.
70.K. Nagai, B. D. Freeman, A. Cannon, H. R. Allcock, Gas permeability of poly(bis-trifluoroethoxyphosphazene) and blends with adamantane amino/trifluoroethoxy(50/50) polyphosphazene, J. Membr. Sci. 172 (2000) 167.
71.H. Matsuyama, M. Teramoto, K. Matsui, Y. Kitamura, Preparation of poly(acrylic acid)/poly(vinyl alcohol) membrane for the facilitated transport of CO2, J. Appl. Polym. Sci., 81 (2001) 936.
72.S. Heß, G. Scharfenberger, C. Staudt-Bickel, R. N. Lichtenthaler, Propylene/propane separation with copolyimides containing benzo-15-crown-5-ether to incorporate silver ions, Desalination, 145 (2002) 359.
73.A. Morisato, Z. He, I. Pinnau, T. C. Merkel, Transport properties of PA12-PTMO/AgBF4 solid polymer electrolyte membranes for olefin/paraffin separation, Desalination, 145 (2002) 347.
74.F. A. Ruiz-Treviño, D. R. Paul, Gas permselectivity properties of high free volume polymers modified by a low molecular weight additive, J. Appl. Polym. Sci., 68 (1998) 403.
75.M. R. Huang, Q. W. Xu, S. Y. Gu, Y. H. Wu, Z. Q. Dong, J. Wang, H. T. Shao, X. S. Wang, Oxygen enrichment across blend membranes of bipyridine and ethyl cellulose, J. Appl. Polym. Sci., 87 (2003) 1371.
76.I. Pinnau, L. G. Toy, Solid polymer electrolyte composite membranes for olefin/paraffin separation, J. Membr. Sci., 184 (2001) 39.
77.P. Hacarlioglu, L. Toppare, L. Yilmaz, Polycarbonate-polypyrrole mixed matrix gas separation membranes, J. Membr. Sci., 225 (2003) 51.
78.R. C. Ruaan, S. H. Chen, J. Y. Lai, Oxygen/nitrogen separation by polycarbonate/Co(SalPr) complex membranes, J. Membr. Sci., 135 (1997) 9.
79.K. C. Khulbe, T. Matsuura, G. Lamarche, H. J. Kim, The morphology characterization and performance of dense PPO membranes for gas separation, J. Membr. Sci., 135 (1997) 211.
80.H. Matsuyama, M. Teramoto, T. Uesaka, Membrane formation and structure development by dry-cast process, J. Membr. Sci., 135 (1997) 271.
81.J. M. A. Tan, T. Matsuura, Effect of nonsolvent additive on the surface morphology and the gas separation performance of poly(2,6-dimeethyl-1,4-phenylene)oxide membranes, J. Membr. Sci., 160 (1999) 7.
82.M. D. Sarkar, P. P. De, A. K. Bhowmick, Effect of casting solvents on physical properties of hydrogenated styrene-butadiene copolymer, Polymer, 40 (1999) 1201.
83.C. Joly, D. L. Cerf, C. Chappey, D. Langevin, G. Muller, Residual solvent effect on the permeation properties of fluorinated polyimide films, Separ. Purif. Technol., 16 (1999) 47.
84.S. Roualdes, J. Sanchez, J. Durand, Gas diffusion and sorption properties of polysiloxane membranes prepared by PECVD, J. Membr. Sci., 198 (2002) 299.
85.H. Kumazawa, M. Yoshida, Mechanism of gas transport of NH3-plasma treated poly(phenylene oxide) membrane, J. Appl. Polym. Sci., 78 (2000) 1845.
86.K. C. Khulbe, T. Matsuura, Characterization of PPO membranes by oxygen plasma etching, gas separation and atomic force microscopy, J. Membr. Sci., 171 (2000) 273.
87.S. H. Chio, M. K. Lee, S. J. Oh, J. K. Koo, Gas sorption and transport of ozone-treated polysulfone, J. Membr. Sci., 221 (2003) 37.
88.O. M. Ilinich, A. A. Lapkin, Sorbate-induced structural rearrangements and permeation of gases in the polyphenylene oxide copolymer, Polymer, 43 (2002) 3209.
89.S. Mstsui, H. Sato, T. Nakagawa, Effects of low molecular weight photosensitizer and UV irradiation on gas permeability and selectivity of polyimide membrane, J. Membr. Sci., 141 (1998) 31.
90.A. Yamasaki, R. K. Tyagi, A. E. Fouda, T. Matsuura, K. Jonasson, Effect of solvent evaporation conditions on gas separation performance for asymmetric polysulfone membranes, J. Appl. Polym. Sci., 71 (1999) 1367.
91.G. Chowdhury, R. Vujosevic, T. Matsuura, B. Laverty, Effects of polymer molecular weight and chemical modification on the gas transport properties of poly(2,6-dimethyl-1,4-phenylene oxide), J. Appl. Polym. Sci., 77 (2000) 1137.
92.S. Takahashi, M. Yoshida, M. Asano, T. Tanaka, T. Nakagawa, Effect of heavy-ion irradiation on the gas permeability of poly(ethylene terephthalate) (PET) membranes, J. Appl. Polym. Sci., 82 (2001) 206.
93.M. Niwa, H. Kawakami, T. Kanamori, T. Shinbo, A. Kaito, S. Nagaoka, Gas separation of asymmetric 6FDA polyimide membrane with oriented surface skin layer, Macromolecules, 34 (2001) 9039.
94.K. J. Lee, J. Y. Jho, Y. S. Kang, J. Won, Y. Dai, G. P. Robertson, M. D. Guiver, Gas transport and dynamic mechanical behavior in modified polysulfones with trimethylsilyl groups: effect of degree of substitution, J. Membr. Sci., 223 (2003) 1.
95.P. Tiemblo, J. Guzman, E. Riande, C. Mijangos, H. Reinecke, The gas transport properties of PVC functionalized with mercapto pyridine groups, Macromolecules, 35 (2002) 420.
96.C. M. Zimmerman, W. J. Koros, Comparison of gas transport and sorption in the ladder polymer BBL and some semi-ladder polymers, Polymer, 40 (1999) 5655.
97.Y. Liu, M. L. Chng, T. S. Chung, R. Wang, Effects of amidation on gas permeation properties of polyimide membranes, J. Membr. Sci., 214 (2003) 83.
98.S. Kazama, T. Teramoto, K. Haraya, Carbon dioxide and nitrogen transport properties of bis(phenyl)fluorine-based cardo polymer membranes, J. Membr. Sci., 207 (2002) 91.
99.L. G. Toy, K. Nagai, B. D. Freeman, I. Pinnau, Z. He, T. Masuda, M. Teraguchi, Y. P. Yampolskii, Pure-gas and vapor permeation and sorption properties of poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA), Macromolecules, 33 (2000) 2516.
100.A. A. Lapkin, O. P. Roschupkina, O. M. Ilinitch, Transport of C1-C3 hydrocarbons in poly(phenylene oxides) membranes, J. Membr. Sci., 141 (1998) 223.
101.A. Y. Houde, S. A. Stern, Solubility and diffusivity of light gases in ethyl cellulose at elevated pressures effects of ethoxy content, J. Membr. Sci., 127 (1997) 171.
102.R. L. Burns, W. J. Koros, Structure-properties relationships for poly(pyrrolone-imide) gas separation membranes, Macromolecules, 36 (2003) 2374.
103.H. W. Kim, K. J. Lee, J. Y. Jho, H. C. Park, J. Won, Y. S. Kang, M. D. Guiver, G. P. Robertson, Y. Gai, Correlation between structure and gas transport properties of silyl-modified polysulfones and poly(phenyl sulfone)s, Macromolecules, 34 (2001) 2908.
104.C. M. Zimmerman, W. J. Koros, Polypyrrolones for membrane gas separations. I. structural comparison of gas transport and sorption properties, J. Polym. Sci. Polym. Phys., 37 (1999) 1235.
105.C. Nagel, K. G. Schade, D. Fritsch, T. Strunskus, F. Faupel, Free volume and transport properties in highly selective polymer membranes, Macromolecules, 35 (2002) 2071.
106.K. Nagai, T. Nakagawa, Effects of aging on the gas permeability and solubility in poly(1-trimethylsilyl-1-propyne) membranes synthesized with various catalysts, J. Membr. Sci., 105 (1995) 261.
107.W. H. Lin, T. S. Chung, Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes, J. Membr. Sci., 186 (2001) 183.
108.P. Tiemblo, J. Guzmán, E. Riande, C. Mijangos, H. Reinecke, Effects of physical aging on the gas transport properties of PVC and PVC modified with pyridine groups, Polymer, 42 (2000) 4817.
109.M. S. McCaig, D. R. Paul, Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging part I. experimental observations, Polymer, 41 (2000) 629.
110.J. H. Petropoulos, Plasticization effects on the gas permeability and permselectivity of polymer membranes, J. Membr. Sci., 75 (1992) 47.
111.A. Y. Houde, S. S. Kulkarni, M. G. Kulkarni, Permeation and plasticization behavior of glassy polymers: a WAXD interpretation, J. Membr. Sci., 71 (1992) 117.
112.E. S. Sanders, S. M. Jordan, R. Subramanian, Penetrant-plasticized permeation in polymethylmethacrylate, J. Membr. Sci., 74 (1992) 29.
113.R. T. Chern, C. N. Provan, Gas induced plasticization and the permselectivity of poly(tetrabromophenolphthhalein terephthalate) to a mixture of carbon dioxide and methane, Macromolecules, 24 (1991) 2203.
114.W. J. Koros, G. N. Smith, V. Stannett, High-pressure sorption of carbon dioxide in solvent-cast poly(methyl methacrylate) and poly(ethyl methacrylate) films, J. Appl. Polym. Sci., 26 (1981) 159.
115.J. S. Chiou, J. W. Barlow, D. R. Paul, Plasticization of glassy polymers by CO2, J. Appl. Polym. Sci., 30 (1985) 2633.
116.A. Bos, I. G. M. Pünt, M. Wessling, H. Strathmann, CO2-induced plasticization phenomena in glassy polymers, J. Membr. Sci., 155 (1999) 67.
117.A. G. Wonders, D. R. Paul, Effect of CO2 exposure history on sorption and transport in polycarbonate, J. Membr. Sci., 5 (1979) 63.
118.M. Wessling, M. L. Lopez, H. Strathman, Accelerated plasticization of thin-film composite membranes used in gas separation, Separ. Purif. Technol., 24 (2001) 223.
119.A. F. Ismail, W. Lorna, Suppression of plasticization in polysulfone membranes for gas separations by heat-treatment technique, Separ. Purif. Technol., 30 (2003) 37.
120.J. J. Krol, M. Boerrigter, G. H. Koops, Polyimide hollow fiber gas separation membranes: preparation and the suppression of plasticization in propane/propylene environments, J. Membr. Sci., 184 (2001) 275.
121.C. Staudt-Bickel, W. J. Koros, Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking, J. Membr. Sci., 155 (1999) 145.
122.J. D. Wind, C. Staudt-Bickel, D. R. Paul, W. J. Koros, The effects of crosslinking chemistry on CO2 plasticization of polyimide gas separation membranes, Ind. Eng. Chem. Res., 41 (2002) 6139.
123.J. D. Wind, C. Staudt-Bickel, D. R. Paul, W. J. Koros, Solid-state covalent cross-linking of polyimide membranes for carbon dioxide plasticization reduction, Macromolecules, 36 (2003) 1882.
124.A. Bos, I. G. M. Pünt, M. Wessling, H. Strathmann, Suppression of CO2-plasticization by semiinterpenetrating polymer network formation, J. Polym. Sci. Polym. Phys., 36 (1998) 1547.
125.A. Bondi, Van der walls volumes and radii, J. Phys. Chem., 68 (1964) 441.
126.J. Bi, G. P. Simon, A. Yamasaki, C. L. Wang, Y. Kobayashi, H. J. Griesser, Effects of solvent in the casting of poly(1-trimethylsilyl- 1-propyne) membranes, Radiation Physics and Chemistry, 58 (2000) 563
127.J. S. Chiou, D. R. Paul, Gas sorption and permeation in poly(ethyl methacrylate), J. Membr. Sci., 45 (1989) 167.
128.J. R. Fried, W. Li, High pressure FTIR studies of gas-polymer interactions, J. Appl. Polym. Sci., 41 (1990) 1123.
129.K. C. Khulbe, T. Matsuura, G. Lamarche, A. M. Lamarche, X-ray diffraction analysis of dense PPO membranes, J. Membr. Sci., 170 (2000) 81.
130.E. S. Sanders, Penetrant- induced plasticization and gas permeation in glassy polymers, J. Membr. Sci., 37 (1988) 63.
131.A. H. Windle, The influence of thermal and mechanical histories on case Ⅱ sorption of methanol by PMMA, J. Membr. Sci., 18 (1984) 87.
132.C. T. Wright, D. R. Paul, Gas sorption and transport in poly(tertiary-butyl methacrylate), Polymer, 38 (1997) 1871.
133.V. Compañ, A. Andrio, M. L. Lõpez, C. Alvarez, E. Riande, Effect of time of annealing on permeation through coextruded linear low-density polyethylene (LLDPE) films, Macromolecules, 30 (1997) 3317.
134.R. Wang, S. S. Chan, Y. Liu, T. S. Chung, Gas transport properties of poly(1,5-naphthalene-2,2’-bis(3,4-phthalic) hexafluoropropane) diimide(6FDA-1,5-NDA) dense membranes, J. Membr. Sci., 199 (2002) 191.
135.K. Ghosal, R. T. Chern, B. D. Freeman, W. H. Daly, I. I. Negulescu, Effect of basic substituents on gas sorption and permeation in polysulfone, Macromolecules, 29 (1996) 4360.
136.Z.-K. Xu, M. Böhning, J. D. Schultze, G.-T. Li, J. Springer, F. P. Glatz, R. Mülhaupt, Gas transport properties of poly(phenylene thioether imide)s, Polymer, 38 (1997) 1573.
137.D. R. Paul, Y. P. Yampolskii, Polymeric Gas Separation Membranes, CRC Press, Boca Rotan, 1994.
138.C. L. Aitken, W. J. Koros, D. R. Paul, Gas transport properties of biphenol polysulfones, Macromolecules, 25 (1992) 3651.
139.M. R. Pixton, D. R. Paul, Gas transport properties of polyarylates based on 9,9-bis(4-hydroxyphenyl)anthrone, Polymer, 36 (1995) 2745.
140.C. L. Aitken, D. R. Paul, D. K. Mohanty, Gas transport properties of poly(arylether bissulfone)s and poly(arylether bisketone)s, J. Polym. Sci., Polym. Phys., 31 (1993) 983.
141.M. R. Coleman, W. J. Koros, Conditioning of fluorine-containing polyimides. 2. Effect of conditioning protocol at 8 volume dilation on gas-transport properties, Macromolecules, 32 (1999) 3106.
142.H. Fujita, Diffusion in polymer-diluent system, Fortschr. Hochpolym. Forsch., 3 (1961) 1.
143.T. A. Barbari, W. J. Koros, D. R. Paul, Polymeric membranes based on bisphenol-A for gas separations, J. Membr. Sci., 42 (1989) 69.
144.Y. P. Yampolskii, A. P. Korikov, V. P. Shantarovich, K. Nagai, B. D. Freeman, T. Masuda, M. Teraguchi, G. Kwak, Gas permeability and free volume of high branched substituted acetylene polymers, Macromolecules, 34 (2001) 1788.
145.T. A. Barbari, W. J. Koros, D. R. Paul, Gas transport in polymers based on Bisphenol-A, J. Polym. Sci. Polym. Phys., 26 (1988) 709.
146.K. Tanaka, H. Kita, M. Okano, K. I. Okamota, Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides, Polymer, 33 (1992) 585.
147.K. Ghosal, B. D. Freeman, R. T. Chern, Gas separation properties of aromatic polyimides with sulfone groups, Polymer, 36 (1995) 793.
148.I. W. Kim, K. J. Lee, J. Y. Jho, H. C. Park, J. Won, Y. S. Kang, M. D. Guiver, G. P. Robertson, Y. Dai, Correlation between structure and gas transport properties of silyl-modified polysulfones and poly(phenyl sulfone)s, Macromolecules, 34 (2001) 2908.
149.T. A. Barbari, W. J. Koros, D. R. Paul, Gas sorption in polymers based on bisphenol-A, J. Polym. Sci. Polym. Phys., 26 (1988) 729.
150.J. S. Mchattie, W. J. Koros, D. R. Paul, Effect of isopropylidene replacement on gas transport properties of polycarbonates, J. Polym. Sci. Polym. Phys., 29 (1991) 731.
151.W. J. Koros, Simplified analysis of gas/polymer selective solubility behavior, J. Polym. Sci. Polym. Phys., 23 (1985) 1611.
152.S. H. Chen, J. Y. Lai, R. C. Ruaan, A. A. Wang, Gas sorption and transport properties of the membrane from polycarbonate/CoⅢ acetylacetonate blend, J. Membr. Sci., 123 (1997) 197.
153.W. J. Koros, Model for sorption of mixed gases in glassy polymers, J. Polym. Sci. Polym. Phys., 18 (1980) 981.
154.W. J. Koros. D. R. Paul, Effect of partially immobilizing sorption on permeability and diffusion time-lag, J. Polym. Sci. Polym. Phys., 14 (1976) 675.
155.L. M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci., 62 (1991) 165.
156.B. D. freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 32 (1999) 375.
157.L. Yang, J. Fang, N. Meichin, K Tanaka, H. Kita, K. Okamoto, Gas permeation properties of thianthrene-5,5,10,10-tetraoxide-containing polyimides, Polymer, 42 (2001)2021.
158.G. K. Fleming, W. J. Koros, Carbon dioxide conditioning effects on sorption and volume dilation behavior for bisphenol A-polycarbonate, Macromolecules, 23 (1990) 1353.
159.C. C. Hu, C. S. Chang, R. C. Ruaan, J. Y. Lai, Effect of free volume and sorption on membrane gas transport, J. Membr. Sci., 226 (2003) 51.
160.P. L. Drzal, A. F. Halasa, P. Kofinas, Microstructure orientation and nanoporous gas transport in semicrystalline block copolymer membranes, Polymer, 41 (2000) 4671.
161.M. R. Pixton, D. R. Paul, Gas transport properties of adamantine-base polysulfones, Polymer, 36 (1995) 3165.
162.W. J. Koros, R. Mahajan, Pushing the limits on possibilities for large scale gas separation: which strategies?, J. Membr. Sci., 175 (2000) 181.
163.M. Wessling, L. Huisman, T. H. V. d. Boomgaard, C. A. smoulders, Time-dependent permeation of carbon dioxide through a polyimide membrane above the plasticization pressure, J. Appl. Polym. Sci., 58 (1995) 1959.
164.L. S. White, T. A. Blinka, H. A. Kloczewski, I.-F. Wang, Properties of a polyimide gas separation membranes in natural gas streams, J. Membr. Sci., 103 (1995) 73.
165.A. F. Ismail, W. Lorna, Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane, Separ. Purif. Technol., 27 (2002) 175.
166.B. J. Briscoe, C. T. Kelly, The plasticization of a polyurethane by carbon dioxide at high pneumatic stresses, Polymer, 36 (1995) 3099.
167.G. S. Huvard, V. T. Stannett, W. J. Koros, H. B. Hopfenberg, The pressure dependence of CO2 sorption and permeation in poly(acrylonitrile), J. Membr. Sci., 6 (1980) 185.
168.J. S. Chiou, D. R. Paul, Effects of CO2 exposure on gas transport properties of glassy polymers, J. Membr. Sci., 32 (1987) 195.
169.L. Makaruk, H. Polanska, T. Mizerski, The effect of chemical structure of derivatives of 1,1-bis(4-hydroxyphenyl)-2,2-propane in the antiplasticization of polycarbonate, J. Appl. Polym. Sci., 23 (1979) 1935.
170.A. Bos, I. G. M. Pünt, M. Wessling, H. Strathmann, Plasticization-resistant glassy polyimide membranes for CO2/CO4 separation, Separ. Purif. Technol., 14 (1998) 27.
171.J. H. Hyun, P. Barletta, K. Koh, S. Yoo, J. Oh, D. E. Aspnes, J. J. Cuomo, Effect of Ar+ ion beam in the process of plasma surface modification of PET films, J. Appl. Polym. Sci., 77 (2000) 1679.
172.H. Xu, Z. Hu, S. Wu, Y. Chen, Surface modification of polytetrafluoroethylene by microwave plasma treatment of H2O/Ar mixture at low pressure, Mater. Chem. Phys., 80 (2003) 278.
173.D. S. Wavhal, E. R. Fisher, Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization, J. Membr. Sci., 209 (2002) 255.
174.J. W. Kim, H. S. Choi, Surface crosslinking of high-density polyethylene beads in a modified plasma reactor, J. Appl. Polym. Sci., 83 (2002) 2921.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top