跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 13:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱永勝
研究生(外文):Yong-Sheng Ciou
論文名稱:熱處理對聚丙烯腈中空纖維膜滲透蒸發分離效能之影響
論文名稱(外文):Effect of heat treatment on the pervaporation performances of PAN hollow fiber membrane
指導教授:劉英麟
指導教授(外文):Ying-Ling Liu
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:72
中文關鍵詞:延伸幾丁聚醣熱穩定化聚丙烯?
外文關鍵詞:drawingchitosanpolyacrylonitrilestabilized
相關次數:
  • 被引用被引用:6
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用紡製之Polyacrylonitrile (PAN)中空纖維膜(hollow fiber membrane)為前驅體(precursor),以熱處理程序製備熱穩定化(stabilization)PAN中空纖維膜,並應用在滲透蒸發 (pervaporation) 分離操作程序。研究中針對不同熱處理條件所製備之熱穩定化PAN中空纖維膜進行具共沸組成之異丙醇(Isopropanol, IPA)水溶液之分離效能進行探討。研究結果發現,在熱處理溫度60~180℃之間,隨著熱處理溫度之增加透過量下降,透過水濃度增加。當溫度高於180℃時透過量又上升。以120℃熱處理12小時進行90wt%異丙醇水溶液之透過量與透過水濃度分別為186 g/m2h 與 99.2 wt﹪。由SEM觀察發現,經過熱處理後,中空纖維膜結構趨於緻密化且從FT-IR 圖譜分析發現,在熱處理溫度為210℃時, PAN中空纖維膜有除氫和環化反應發生。研究中亦探討進料溫度與進料濃度對異丙醇水溶液之滲透蒸發分離效能之影響。隨著進料溫度之上升透過量增加而透過水濃度下降;進料異丙醇濃度增加時,透過量下降而透過水濃度增加。研究中同時比較熱穩定化PAN中空纖維膜對乙醇水溶液、異丙醇水溶液以及四氟丙醇水溶液之滲透蒸發分離效能,其中以對四氟丙醇水溶液之滲透蒸發分離效能較佳。
In this study, Heat-treated polyacrylonitrile (PAN) hollow fiber membranes were prepared by heat-treating the PAN precursor hollow fiber membrane with different heat-treatment conditions. The influence of heat-treatment conditions on the pervaporation performances of aqueous isopropanol (IPA) solution through heat-treated PAN hollow fiber membranes were investigated. It shows that the permeation rate decreases and the water content in permeate increases with increasing heat-treatment temperature in the range of 60-180 OC. Nevertheless, the permeation rate increases again as the heat-treatment temperature increases. The permeation rate and water content in the permeate for a 90wt% aqueous isopropanol solution through the heat-treated PAN hollow fiber membranes at 120℃ for 12h were 186 g/m2h and 99.2 wt﹪, respectively. The SEMs observation depicts that the morphology of heat-treated PAN hollow fiber membranes were denser with increasing the heat-treatment temperature. As the heat treatment temperature higher than 210oC, dehydrogenation and cyclization reaction of the PAN molecular occurred during the heat-treatment process. Moreover, the inference of feed temperature and feed composition on the pervaporation performance through heat-treated PAN hollow fiber membranes were also investigated. It shows that an increase in the feed isopropanol concentration results in a decrease in the permeation rate and an increase in the separation factor. And the permeation rate increase and the separation factor decrease with increasing the feed solution temperature. The pervaporation performances for 90 wt% ethanol solution, isopropanol solution and tetrafluropropanol solution through heat-treated PAN hollow fiber membranes were also investigated. The tetrafluropropanol solution gave the best separation performance through heat-treated PAN hollow fiber membranes.
第一章 緒 論1
1-1 薄膜分離技術概論1
1-2 中空纖維膜之發展與文獻回顧3
1-3 中空纖維膜之優勢6
1-4 薄膜製備方式6
1-4-1 平板膜之製備6
1-4-1.1 熱誘導式相轉換法6
1-4-1.2 乾式相轉換法7
1-4-1.3 濕式相轉換法7
1-4-1.4 乾/濕式混合製程8
1-4-2 中空纖維膜之製備8
1-4-2.1 熔融紡絲法8
1-4-2.2 乾式紡絲法8
1-4-2.3 濕式紡絲法8
1-4-2.4 乾濕式紡絲法9
1-5 滲透蒸發9
1-6 薄膜之改質方法10
1-6-1 摻合11
1-6-2 接枝12
1-6-3 電漿改質13
1-6-4 熱穩定化改質14
1-7 研究目的16
第二章 實 驗 18
2-1 實驗藥品18
2-2 實驗儀器19
2-3 實驗方法20
2-3-1 鑄膜溶液配置20
2-3-2 PAN中空纖維膜之紡製20
2-3-3 熱穩定化PAN中空纖維膜製備程序21
2-3-4 熱性質分析24
2-3-5 模組之封裝與測試24
2-3-6 中空纖維膜之滲透蒸發測試25
2-3-7 中空纖維膜結構分析27
2-3-7-1 SEM27
2-3-7-2 AFM27
2-3-8 傅氏轉換紅外線光譜儀27
2-3-9 膨潤度測試28
第三章 結果與討論30
3-1 熱處理荷重對熱穩定化PAN中空纖維膜滲透蒸發之影響30
3-2 熱穩定化PAN中空纖維膜之結構型態31
3-3 熱處理溫度對熱穩定化PAN中空纖維膜滲透蒸發之影響31
3-4 熱處理時間對熱穩定化PAN中空纖維膜滲透蒸發之影響34
3-5 進料濃度的影響35
3-6 進料溫度的影響35
3-7 進料物種的影響36
3-8 中空纖維膜分離效能37
第四章 結 論38
第五章 參考文獻63
作者簡介72


































Figure captions
Fig 1-1. Schematic representation of a two-phase system separated by a membrane--------------------------------------------------------------- 2
Fig 1-2 The solution-diffusion model----------------------------------------- 10
Fig 1-3 Schematic of reactions during heat-treatment of PAN up to 400℃------------------------------------------------------------------------- 17
Fig 2-1 Hollow fiber spinning apparatus------------------------------------- 20
Fig 2-2 Different heat treatment temperature process----------------------- 22
Fig 2-3 Different heating rate and hold time--------------------------------- 23
Fig 2-4 The hollow fiber membrane module for pervaporation----------- 25
Fig 2-5 Schematic diagram of pervaporation apparatus-------------------- 26
Fig 2-6 DSC analysis for PAN polymer-------------------------------------- 29
Fig 3-1 Effect of heat-treatment temperature on the cross section morphology of PAN hollow fiber membrane. Heat-treatment temperature:(A) No heat-treatment, (B) 60℃, (C) 120℃, (D) 150℃, (E) 180℃, (F) 210℃------------------------------------------ 41
Fig 3-2 Effect of heat-treatment temperature on the outer edge morphology of PAN hollow fiber membrane. Heat-treatment temperature:(A) No heat-treatment, (B) 60℃, (C) 120℃, (D) 150℃, (E) 180℃, (F) 210℃------------------------------------------ 42
Fig 3-3 Effect of heat-treatment temperature on the inner edge morphology of PAN hollow fiber membrane. Heat-treatment temperature:(A) No heat-treatment, (B) 60℃, (C) 120℃, (D) 150℃, (E) 180℃, (F) 210℃------------------------------------------ 43
Fig 3-4 Effect of heat-treatment temperature on the middle morphology of PAN hollow fiber membrane. Heat-treatment temperature:(A) No heat-treatment, (B) 60℃, (C) 120℃, (D) 150℃, (E) 180℃, (F) 210℃------------------------------------------ 44
Fig 3-5 Effect of heat-treatment temperature on the outer surface morphology of PAN hollow fiber membrane. Heat-treatment temperature:(A) No heat-treatment, (B) 60℃, (C) 120℃, (D) 150℃, (E) 180℃, (F) 210℃------------------------------------------ 45
Fig 3-6 Effect of heat-treatment temperature on the inner surface morphology of PAN hollow fiber membrane. Heat-treatment temperature:(A) No heat-treatment, (B) 60℃, (C) 120℃, (D) 150℃, (E) 180℃, (F) 210℃------------------------------------------ 46
Fig 3-7 (A) AFM analysis of PAN(22wt﹪)/DMF/H2O hollow fiber on the outer surface, no annealing-------------------------------------------- 47
Fig 3-7 (B) AFM analysis of PAN(22wt﹪)/DMF/H2O hollow fiber on the outer surface, annealing temperature at 60℃----------------------- 48
Fig 3-7 (C) AFM analysis of PAN(22wt﹪)/DMF/H2O hollow fiber on the outer surface, annealing temperature at 90℃----------------------- 49
Fig 3-7 (D) AFM analysis of PAN(22wt﹪)/DMF/H2O hollow fiber on the outer surface, annealing temperature at 120℃--------------------- 50
Fig 3-7 (E) AFM analysis of PAN(22wt﹪)/DMF/H2O hollow fiber on the outer surface, annealing temperature at 150℃--------------------- 51
Fig 3-7 (F) AFM analysis of PAN(22wt﹪)/DMF/H2O hollow fiber on the outer surface, annealing temperature at 180℃--------------------- 52
Fig 3-7 (G) AFM analysis of PAN(22wt﹪)/DMF/H2O hollow fiber on the outer surface, annealing temperature at 210℃--------------------- 53
Fig 3-8 Effect of heat treatment on the FTIR analysis of PAN(22wt﹪)/DMF /H2O hollow fiber membrane----------------------------- 54
Fig 3-9 The effect of heat treatment hold time on the pervaporation performance of stabilization PAN hollow fiber-------------------- 56
Fig 3-10 Effect of heat-treatment hold time on the outer surface morphology of PAN hollow fiber membrane(heat-treatment temperature = 120℃). Heat-treatment hold time:(A) No hold time,(B) 6hr,(C) 12hr,(D) 24hr--------------------------------------- 57
Fig 3-11 The effect of feed composition on pervaporation performance of stabilization PAN hollow fiber------------------------------------ 58
Fig 3-12 The effect of feed temperature on pervaporation performance of stabilization PAN hollow fiber------------------------------------ 59


























Table captions
Table 1-1 Membrane processes and the associated driving forces 3
Table 2-1 Process parameters and spinning conditions of wet spinning process…………………………………………………………. 21
Table 3-1 The effect of gravity on the pervaporation performance of stabilization PAN hollow fiber…………………………………. 39
Table 3-2 The effect of heat treatment temperature on the pervaporation performance of stabilization PAN hollow fiber………………... 40
Table 3-3 AFM analysis of PAN(22wt﹪)/DMF/H2O hollow fiber on the outer surface……………………………………………………. 55
Table 3-4 Effect of feed solution on the degree of swelling of stabilization PAN hollow fiber at 25℃………………………… 60
Table 3-5 The effect of feed solution on pervaporation performance of stabilization PAN hollow fiber…………………………………. 61
Table 3-6 Pervaporation performance of hollow fiber membranes………. 62
1.W. S. Winston Ho (ed), K. K. Sirkar(ed), “Membrane handbook”, Van Nostrand Reinhold, New York, (1992).
2.M. H. V. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, The Netherlands, (1996).
3.王湛, “膜分離技術基礎”, 化學工業出版社,北京 ( 2000 ) .
4.S. Loeb, S. Sourirajan, “Sea water demineralization by means of an osmotic membrane”, Adv. Chem. Ser., 38 (1962) 117.
5.H. I. Mahon, “Permeability separator apparatus and membrane element, method of making the same and process utilizing the same”, U. S. Patent 3,228,876, Dow Chemical, (1966).
6.H. I. Mahon, “Permeability separator apparatus and process using hollow fibers”, U. S. Patent 3,228,877, Dow Chemical, (1966).
7.I. Cabasso, E. Klein, J. K. Smith, “Polysulfone hollow fibers. Ⅰ. Spinning and properties” J. Appl. Polym. Sci., 20 (1976) 2377.
8.I. Cabasso, E. Klein, J. K. Smith, “Polysulfone hollow fibers. Ⅱ. Morphology” J. Appl. Polym. Sci., 21 (1977) 165.
9.V. C. Geiszler, W. J. Koros, “Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties” Ind. Eng. Chem. Res., 35 (1996) 2999.
10.K. Okamoto, S. Kawamura, M. Yoshino, H. Kita, Y. Hirayama, N. Tanihara, Y. Kusuki “Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane” Ind. Eng. Chem. Res., 38 (1999) 4424.
11.J. Shieh, T. S. Chung, “Cellulose nitrate-based multilayer composite membranes for gas separation” J. Membr. Sci., 166 (2000) 259.
12.G.C. Kapantaidakis, G.H. Koops, “High flux polyethersulfone polyimide blend hollow fiber membranes for gas separation” J. Membr. Sci., 204 (2002) 153.
13.X. Yin, H. Cheng, X. Wang, Y. Yao, “Morphology and properties of hollow fiber membrane made by PAN mixing with small amount of PVDF” J. Membr. Sci., 146 (1998) 179.
14.D. Wang, K. Li, W. K. Teo, “Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes” J. Membr. Sci., 163 (1999) 211.
15.J. J. Qin, Y. Li , L. S. Lee, H. Lee, “Cellulose acetate hollow fiber ultrafiltration membranes made from CA/PVP 360 K/NMP/water” J. Membr. Sci., 218 (2003) 173.
16.M. Shang, H. Matsuyama, M. Teramoto, D. R. Lloyd, N. Kubota, “Preparation and membrane performance of poly(ethylene-co- vinyl alcohol) hollow fiber membrane via thermally induced phase separation” Polymer 44 (2003) 7441.
17.F. Q. Nie, Z. K. Xu, L. S. Wan, P. Ye, J. Wu, “Acrylonitrile-based copolymers containing reactive groups: synthesis and preparation of ultrafiltration membranes” J. Membr. Sci., 230 (2004) 1.
18.K. Watanabe, S. Kyo “Pervaporation performance of hollow-fiber chitosan polyacrylonitrile composite membrane in dehydration of ethanol”, J. Chem. Eng. Jpn., 25 (1992) 17.
19.B. Cai, Y Zhou, C. Gao, “Modified performance of cellulose triacetate hollow fiber membrane” Desalination 146 (2002) 331.
20.Z. K. Xu, Q. W. Dai, Z. M. Liu, R. Q. Kou, Y. Y. Xu, “Microporous polypropylene hollow fiber membranes Part II. Pervaporation separation of water/ethanol mixtures by the poly(acrylic acid) grafted membranes” J. Membr. Sci., 214 (2003) 71.
21.P. Vandeweerdt and H. Berghmans, “Temperature-concentration behavior of solution polydisperse, atactic poly ( methyl methacrylate ) and its influence on the formation of amorphous”, microporous membranes, Macromolecules, 24 (1991) 3547.
22.R. H. Mehta, D. A. Madsen and D. S. Kalika, “Microporous membranes based on poly(ether ether ketone) via thermally- induced phase separation”, J. Membr. Sci., 107 (1995) 93.
23.M. Kurata, “Thermodynamics of polymer solutions”, Harwood Academic, London, (1982).
24.L. Zeman and T. Fraser, “Formation of air-cast cellulose acetate membranes”, Part I. Study the macrovoid formation, J. Membr. Sci., 84 (1993) 93.
25.L. Zeman and T. Fraser, “Formation of air-cast cellulose acetate membranes”, Part II. Kinetic of demixing and macrovoid growth, J. Membr. Sci., 87 (1993) 267.
26.H. Strathmann and K. Kock, The formation mechanism of phase inversion membrane, Desalination, 21 (1977) 241.
27.J. Y. Lai, M. J. Liu and K. R. Lee, “Polycarbonate membrane prepared via a wet phase inversion method for oxygen enrichment from air”, J. Membr. Sci., 86 (1994) 103.
28.F. C. Lin, D. M. Wang and J. Y. Lai, “Asymmetric TPX membranes with high gas flux”, J. Membr. Sci., 110 (1996) 25.
29.H. Yanagishita, T. Nakane and H. Yoshitome, “Selection criteria for solvent and gelation medium in the phase inversion process”, J. Membr. Sci., 89 (1994) 215.
30.P. M. Bungay, H. K. Lonsdale, and M. N. de Ponho, “Synthetic Membrane Science, Engineering and Applications”, D. Reidel Pub. Co., The Netherlands, (1986).
31.X. Feng, R. Y. M. Huang, “Liquid Separation by Membrane Pervaporation:A Review”, Ind. Eng. Chem. Res., 36 (1997) 1048.
32.R. C. Binning and R. J. Lee, “Separation of azeotropic mixtures”, U.S. Patent, 2, 953, 520 (1960).
33.R. C. Binning, R. J. Lee, J. F. Jennings and E. C. Martin, “Separation of liquid mixtures by pervaporation”, Ind. Eng. Chem. Process Des. Dev., 1 (1962) 14.
34.方珮珊, “CF4/C2H22電漿披覆於非對稱聚碸膜對滲透蒸發膜之影響”, 中原大學化學工程研究所碩士論文, (2003).
35.J. J. Shieh, R. Y. M. Huang, “Pervaporation with chitosan membranes II. Blend membranes of chitosan and polyacrylic acid and comparison of homogeneous and composite membrane based on polyelectrolyte complexes of chitosan and polyacrylic acid for the seporation of ethanol-water mixtures”, J. Membr. Sci., 127 (1997) 185.
36.Lawrence F. Hancock, Stephen M. Fagan, Melissa S. Ziolo, “Hydrophilic, semipermeable membranes fabricated with poly(ethylene oxide)-polysulfone block copolymer”, Biomaterials, 21 (2000) 725.
37.M. Yoshikawa, K. Tsubouchi, M. D. Guiver, G. P. Robertson, “Modified polysulfone membrane Ⅲ. Pervaporation separation of benzene-cyclohexan mixtures through carboxlated polysulfone membranes”, J. Appl. Polym. Sci., 74 (1999) 407.
38.S. H. Chen, R. M. Liou, C. S. Hsu, D. J. Chang, K. C. Yu, C. Y. Chang, “Pervaporation separation water/ethanol mixture through lithiated polyfulson membrane”, J. Membr. Sci., 127 (1997) 185.
39.S. H. Chen, K. C .Yu, S. S Lin, D. J Chang, R. M. Liou, “Pervaporation separation of water/ ethanol mixture by sulfonated polysulfone membrane”, J. Membr. Sci., 183 (2001).
40.H. Cooperes, K. J. Gifkins, “Gas plasma treatment of polymer surfaces”, J. Macromol. Sci. Chem., A17 (1982) 217.
41.施証耀 “以乙缺/氮氣電漿改質高分子氣體分離膜之研究” 中原大學化學工程系碩士學位論文 (1996).
42.林建中, “高分子加工與工程(塑膠‧纖維‧橡膠之技術)”, 文京圖書有限公司 (1974).
43.D. A. Musale, A. Kumar, G. Pleizier “Formation and characterization of poly(acrylonitrile)/chitosan composite ultrafiltration membranes,” J. Membr. Sci., 154 (1999) 163.
44.D. A. Musale, A. Kumar “Solvent and pH resistance of surface cross-linked chitosan/poly(acrylonitrile) composite nanofiltration membranes” J. Appl. Polym. Sci., 77 (2000) 1782.
45.X. P. Wang, Z. Q. Shen, F. Y. Zhang, Y. F. Zhang “A novel composite chitosan membrane for the separation of alcohol-water mixtures”, J. Membr. Sci., 119 (1996) 191.
46.E. Fitzer and D. J. Muller, “The influence of oxygen on the chemical reactions during stabilization of PAN as carbon fiber precursor”, Carbon, 13 (1975) 63.
47.T. S. Chung, S. K. Teoh, W. W. Y. Lau, and M. P. Srinivasan “Effect of shear stress within the spinneret on hollow fiber membrane morphology and separation performance”, Ind. Eng. Chem. Res., 37 (1998) 3930.
48.H. A. Tasi, M. J. Huang, Y. C. Wang, C. L. Li, K. R. Lee, J. Y. Lai “Effect of DGDE additive on the morphology and pervaporation performances of asymmetric PSf hollow fiber membranes”, J. Membr. Sci., 208 (2002) 233.
49.H. A. Tsai, S. C. Chen, W. L. Chou, K. R. Lee, M. C. Yang and J. Y. Lai,” Pervaporation of water/alcohol mixtures through chitosan/cellulose acetate composite hollow fiber membranes” J. Appl. Polym. Sci., accepted (2004).
50.Z. K. Xu, Q. W. Dai, Z. M. Liu, R. Q. Kou, Y. Y. Xu “Microporous polypropylene hollow fiber membranes PartⅡ. Pervaporation separation of water/ethanol mixtures by the poly(acrylic acid) grafted membranes”, J. Membr. Sci., 214 (2003) 71.
51.B. Cai, Y. Zhou, C. Gao “Modified performance of cellulose triacetate hollow fiber membrane”, Desalination, 146 (2002) 331.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top