跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/04 11:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡志源
研究生(外文):Chih-Yuan Tsai
論文名稱:混合溶劑除濕液之熱物性質密度、黏度及蒸氣壓量測
論文名稱(外文):Vapor Pressures, Densities and Viscosities of Mixed-Solvent Desiccants
指導教授:李夢輝李夢輝引用關係
指導教授(外文):Meng-Hui Li
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:97
中文關鍵詞:密度平均圓球近似法蒸氣壓黏度
外文關鍵詞:viscosityvapor pressuremean spherical approximationdensity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:2
液體除濕液已被廣泛的運用在移除空氣中的水氣,而液體除濕劑主要可分為無機鹽類與有機醇類水溶液,直到最近混合溶劑除濕液才被廣泛的討論。本研究為量測(LiCl or LiBr) / (PG or TEG) / H2O之密度、黏度及蒸氣壓,濃度範圍為鹽類(4-25 mass %)有機醇類為(50-80 mass %),溫度為30到70℃。
對於醇類水溶液之密度與黏度採用Redlich-Kister equations 之過剩體積及過剩動黏度之模式來計算,而混合溶劑部分則是結合了鹽類濃度與溶劑在salt-free的情況下所延伸出的關係式來描述,而計算的結果是令人滿意的。在蒸氣壓部分,採用平均圓球近似法理論為基礎來描述溶液的蒸氣壓,並得到令人滿意的結果。
研究結果發現,鹽類的加入能有效的降低溶液的蒸氣壓,但卻造成黏度增加的問題,所以基於這兩種因素的考量,在此發現LiCl/PG/H2O為一較理想的除濕液組成。而本研究所得之密度、黏度及蒸氣壓數據更可作為設計除濕設備之基礎參考數據。
The liquid desiccants are commonly used for absorbing moisture from air. Conventionally used liquid desiccants are aqueous solutions of either inorganic salts or organic compounds. The aqueous-organic with salt systems have been recently considered as potential absorbents for liquid desiccants. The thermodynamic properties such as density, viscosity, and vapor pressure of (LiCl or LiBr) / (propylene glycol or triethylene glycol) / H2O systems for temperatures ranging from 30 to 70 ℃ have been measured in this study. For each ternary system, four systems of which ( 4 - 25 mass % ) salt mixed with various glycols ( 50 - 80 mass % ) were studied.
The Redlich-Kister equations for the excess volume and the excess kinematic viscosity were used to model the measured density and viscosity of aqueous glycols. For the salt/glycol/H2O systems, an equation expressed as function of the molality of salt to calculate the difference between the property of the solution and the property of the salt-free aqueous glycol was developed. The results of the calculations of density and viscosity for salt/glycol/H2O systems are satisfactory. Incorporated with the pseudo-solvent approach, a vapor pressure model based on the mean spherical approximation for aqueous electrolyte solutions was used to represent the measured vapor pressure of salt/glycol/H2O systems. Satisfactory results were obtained for the vapor pressure calculations for salt/glycol/H2O systems.
When compared to the vapor pressures of conventionally used liquid desiccants, the vapor pressures of the aqueous-organic systems with salt yields smaller values of vapor pressures. On the other hand, the viscosity of salt/glycol/H2O is generally increasing with the molality of the salt. When consider both the vapor pressure and the viscosity of the solution, the LiCl/PG/H2O was found to be the best desiccant among four systems tested. The thermodynamics properties measured in this study can be used as the data base for design dehumidifier process using mixed-solvent desiccants as absorbents.
目錄

摘要 .......................................................................................................... I
Abstract ………………………………………………………………… II
誌謝 …………………………………………………………………... III
目錄 …………………………………………………………………... IV
表目錄 ………………………………………………………………. VI
圖目錄 ……………………………………………………………..... VII
第一章 緒論 …………………………………………………………... 1
1-1 前言 ………………………………………..………..………….. 1
1-2 研究動機與方向 …………………………………..…..……….. 2
第二章 文獻回顧 ………………........................................................... 7
2-1 除濕效率 ……………………………………….……………..... 7
2-2 電解質水溶液之蒸氣壓關聯模式 ………….………………... 10
2-2-1 安東尼方程式(Antoine equation)蒸氣壓關聯式 ….......... 10
2-2-2 電解質平均活性係數 ………………………………….… 11
2-2-3 溶劑之滲透係數(Osmotic Coefficients) …………………. 12
2-3 使用擬溶劑(pseudo-solvent)方法來計算系統溶劑之熱物質
…………………………………………………………………. 16
2-3-1 單一醇類及其水溶液密度、動黏度之關聯模式 ……..... 16
2-3-2 混合溶劑之介電常數 ……………………………………. 18
2-3-3 水的活性係數 ……………………………………………. 18
2-4 混合溶劑除濕劑密度、動黏度之關聯模式 ………………… 18
第三章 實驗 …………………………………………………………. 20
3-1 實驗藥品 ……………………………………………………… 20
3-2 密度之量測 …………………………………………………… 20
3-3 黏度之量測 …………………………………………………… 21
3-4 蒸氣壓之量測 ………………………………………………… 22
第四章 結果與討論 …………………………………………………. 26
4-1 密度量測結果與計算 …..…………….……………………… 26
4-2 黏度量測結果與計算 ..….……………………………………. 46
4-3 蒸氣壓量測結果與計算 ……………………………………… 66
4-3-1 對照實驗 ……………...…………………………………… 66
4-3-2 Antoine equation 計算模式 ……………………………… 70
4-3-3 MSA蒸氣壓計算模式 ……………………………………..84
第五章 結論 …………………………………………………………. 92
參考文獻 ……………………………………………………………... 93
自述 ………………………………………………………………..... 97














表目錄

Table 3-1-1. 無機鹽類及有機醇類藥品名稱、濃度及供應廠商 …… 20
Table 4-1-1. Densities of Glycols/H2O ……….……………………….. 28
Table 4-1-2. The parameters in equation 2-3-5 …………..………….... 29
Table 4-1-3. The parameters in equation 2-3-2 …………..……..…….. 29
Table 4-1-4. Densities of LiCl(1)/Glycols(2)/H2O ………....………… 30
Table 4-1-5. Densities of LiBr(1)/Glycols(2)/H2O ………...….……… 31
Table 4-1-6. The parameters in equation 4-1-2 ……………………….. 32
Table 4-1-7. The parameters in equation 4-1-2 ……………………….. 33
Table 4-2-1. Viscosities of Glycols/H2O ………..…………………….. 48
Table 4-2-2. The parameters in equation 2-3-9 ……………..………… 49
Table 4-2-3. The parameters in equation 2-3-8 ……………..………… 49
Table 4-2-4. Viscosities of LiCl(1)/Glycols(2)/H2O ………………….. 50
Table 4-2-5. Viscosities of LiBr(1)/Glycols(2)/H2O ……………..…… 51
Table 4-2-6. The parameters in equation 4-2-2 …...……………...…… 52
Table 4-2-7. The parameters in equation 4-2-2 ………………..……... 53
Table 4-3-1. Vapor pressures of H2O ...……………………………… 66
Table 4-3-2. Vapor pressures of 40 wt% LiCl/H2O ...……………….. 67
Table 4-3-3. Vapor pressures of LiCl(1)/PG(2)/H2O ……………….. 72
Table 4-3-4. Vapor pressures of LiCl(1)/TEG(2)/H2O ………........... 73
Table 4-3-5. Vapor pressures of LiBr(1)/PG(2)/H2O …………..…… 74
Table 4-3-6. Vapor pressures of LiBr(1)/TEG(2)/H2O ………..……. 75
Table 4-3-7. The parameters in Antoine equation …………………... 76
Table 4-3-8. The parameters in MSA equation ……………………….. 85

圖目錄

Figure 1-2-1. Vapor pressures of LiCl/H2O (data of Patil et al., 1990) ... 4
Figure 1-2-2. Vapor pressures of Glycols/H2O (data of Chung and Luo, 1999) …………………………………………………… 5
Figure 1-2-3. Vapor pressures of 40 mass % ( LiCl or LiBr )/( PG or TEG) by 1 to 1 volume ratio (data of Chung and Luo, 1999) … 6
Figure 2-1-1. 逆向流填充塔示意圖 (羅, 1999) ..…………………….. 8
Figure 3-4-1. Schematic diagram of the vapor pressure measurement apparatus ………………………………………………. 25
Figure 4-1-1. Densities of PG/H2O ……………………………………. 34
Figure 4-1-2. Densities of TEG/H2O ………………………………….. 35
Figure 4-1-3. Densities of LiCl/PG/H2O ……………………………… 36
Figure 4-1-4. Densities of LiCl/TEG/H2O …………………………….. 37
Figure 4-1-5. Densities of LiBr/PG/H2O ……………………………… 38
Figure 4-1-6. Densities of LiBr/TEG/H2O ……………………………. 39
Figure 4-1-7. Plot of ( ρ - ρa ) vs. temperature for LiCl/PG/H2O .......... 40
Figure 4-1-8. Plot of ( ρ - ρa ) vs. temperature for LiCl/TEG/H2O ..….. 41
Figure 4-1-9. Plot of ( ρ - ρa ) vs. temperature for LiBr/PG/H2O .……. 42
Figure 4-1-10. Plot of ( ρ - ρa ) vs. temperature for LiBr/TEG/H2O .… 43
Figure 4-1-11. Plot of ( ρ - ρa ) vs. msalt at 30 ℃ ................................... 44
Figure 4-1-12. Plot of ( ρ - ρa ) vs. msalt at 70 ℃ .................................. 45
Figure 4-2-1. Viscosities of PG/H2O ………………………………….. 54
Figure 4-2-2. Viscosities of TEG/H2O ................................................... 55
Figure 4-2-3. Viscosities of LiCl/PG/H2O ……………………………. 56
Figure 4-2-4. Viscosities of LiCl/TEG/H2O ........................................... 57
Figure 4-2-5. Viscosities of LiBr/PG/H2O …………………………..... 58
Figure 4-2-6. Viscosities of LiBr/TEG/H2O ……................................... 59
Figure 4-2-7. Plot of ( η - ηa ) vs. temperature for LiCl/PG/H2O ....…. 60
Figure 4-2-8. Plot of ( η - ηa ) vs. temperature for LiCl/TEG/H2O .…... 61
Figure 4-2-9. Plot of ( η - ηa ) vs. temperature for LiBr/PG/H2O ....….. 62
Figure 4-2-10. Plot of ( η - ηa ) vs. temperature for LiBr/TEG/H2O .… 63
Figure 4-2-11. Plot of ( η - ηa ) vs. msalt at 30 ℃ ................................... 64
Figure 4-2-12. Plot of ( η - ηa ) vs. msalt at 70 ℃ ................................... 65
Figure 4-3-1. Vapor pressures of H2O ..……………………………… 68
Figure 4-3-2. Vapor pressures of 40 wt% LiCl/H2O ………………… 69
Figure 4-3-3. Vapor pressures of LiCl/H2O and LiCl/Glycols/H2O …... 77
Figure 4-3-4. Vapor pressures of LiCl/Glycols/H2O ………....……….. 78
Figure 4-3-5. Vapor pressures of LiBr/H2O and LiBr/Glycols/H2O ...... 79
Figure 4-3-6 Vapor pressures of LiBr/Glycols/H2O ……...…………... 80
Figure 4-3-7. Vapor pressures of LiCl/TEG/H2O and LiBr/PG/H2O …. 81
Figure 4-3-8. Vapor pressures of LiCl/TEG/H2O and LiBr/PG/H2O ..... 82
Figure 4-3-9. Plot of vs. temperature .….…..….…… 83
Figure 4-3-10. Vapor pressures of PG/H2O (data of Dow Chemical
Company, 1956) ………………………………………. 86
Figure 4-3-11. Vapor pressures of TEG/H2O (data of Dow Chemical
Company, 1956) ………………………………………. 87
Figure 4-3-12. Dielectric constants of H2O and Glycols (data of Lide, 2001-2002) ……………………………....…………….. 88
Figure 4-3-13. Plot of ( ) vs. msalt …..………………..…………. 89
Figure 4-3-14. Vapor pressures of LiCl/Glycols/H2O ….....…..………. 90
Figure 4-3-15. Vapor pressures of LiBr/Glycols/H2O ….....…..………. 91
羅中銘,吸收式除濕塔中除濕效率與溶液蒸氣壓之關係研究,中原大學化學工程研究所,1999年。
林麒峰,除濕劑新配方之蒸氣壓量測研究,中原大學化學工程研究所,2002年。
陳儷方,混合溶劑除濕液之蒸氣壓量測研究,中原大學化學工程研究所,2003年。
Ahmed, C. S. K.; Gandhidasan, P.; Al-Farayedhi, A. A. Simulation of a Hybrid Liquid Desiccant based Air-Conditioning System. Applied Thermal Engineering 1997, 17, 125-134.
ASHRAE, Handbook of Fundamentals, American Society of Heating, Refrigeration and Air Conditioning; Atlanta, GA: USA, 1993.
Blum, L. Mean Spherical Model for Asymmetric Electrolytes. I. Method of Solution. Mol. Phys. 1975, 30, 1529-1535.
Castro, C. S.; Blum, L. Explicit Approximation for the Unrestricted Mean Spherical Approximation for Ionic Solutions. J. Phys. Chem. 1989, 93, 7478-7482.
Chung, T. W. Predictions of Moisture Removal Efficiencies for Packed-Bed Dehumidification Systems. Gas Sep. Purif. 1994, 8, 265-268.
Chung, T. W.; Luo, C. M. Vapor Pressures of the Aqueous Desiccants. J. Chem. Eng. Data 1999, 44, 1024-1027.
Chung, T. W.; Wu, H. Comparison between Spray Towers with and without Fin Coils for Air Dehumidification Using Triethylene Glycol Solutions and Development of the Mass-transfer Correlations. Ind. Eng. Chem. Res. 2000, 39, 2076-2084.
Coyne, G. S. The Laboratory Handbook of Materials, Equipment, & Technique; Prentice Hall: New Jersey, 1992.
Dow Chemical Company Properties of Uses of Glycols, 1956.
Gering, K. L.; Lee, L. L.; Landis, L. H. A Molecular Approach to Electrolytes: Phase Behavior and Activity Coefficients for Mix-Salt and Multisolvent Systems. Fluid Phase Equilibria 1989, 48, 111-139.
Harriman, L. Desiccant Cooling and Dehumidification; ASHRAE publication, American Society of Heating, Refrigeration and Air Conditioning; Atlanta GA: USA, 1992.
Horvath, A. L. Handbook of Aqueous Electrolyte Solution: Physical Properties, Estimation and Correlation Method; Ellis Horwood: New York, 1985.
Hsu, C. H.; Li, M. H. Densities of Aqueous Blended Amines. J. Chem. Eng. Data 1997, 42, 502-507.
Iyoki, S.; Iwasaki, S.; Uemura, T. Vapor Pressures of the Water-Lithium Bromide-Lithium Iodide System. J. Chem. Eng. Data 1990, 35, 429-433.
Kim, J. -S.; Park, Y.; Lee, H. Solubilities and Vapor Pressures of the Water + Lithium Bromide + Ethanolamine System. J. Chem. Eng. Data 1996, 41, 279-281.
Kinsara, A. A.; Elsayed, M. M.; Al-Rabghi, O. M. Proposed Energy- Efficient Air-Conditioning System using Liquid Desiccant. Applied Thermal Engineering 1996, 16, 791-806.
Kohl A. L.; Nielsen, R. B. Gas Purification; 5th ed., Gulf Publishing Company: Houston, Texas, 1997.
Kusik, C. L.; Meissner, H. P. Vapor Pressures of Water Over Aqueous Solutions of Strong Electrolytes. Ind. Eng. Chem. Process Des. Develop. 1973, 12, 112-115.
Lide, D. R. CRC Handbook of Chemistry and Physics; 82nd ed., CRC: New York Washington, D. C., 2001-2002.
Patil, K. R.; Tripathi, A. D.; Pathak, G.; Katti, S. S. Thermodynamic Properties of Aqueous Electrolyte Solutions. 1. Vapor Pressure of Aqueous Solutions of LiCl, LiBr, and LiI. J. Chem. Eng. Data 1990, 35, 166-168.
Patil, K. R.; Tripathi, A. D.; Pathak, G.; Katti, S. S. Thermodynamic Properties of Aqueous Electrolyte Solutions. 2. Vapor Pressure of Aqueous Solutions of NaBr, NaI, KCl, KBr, KI, RbCl, CsCl, CsBr, CsI, MgCl2, CaCl2, CaBr2, CaI2, SrCl2, SrBr2, SrI2, BaCl2, and BaBr2. J. Chem. Eng. Data 1991, 36, 225-230.
Perry, R. H.; Green, D. W.; Maloney J. O. Perry’s Chemical Engineers' Handbook; 7th ed., McGraw-Hill: New York, 1997.
Pikkarainen, L. Densities and Viscosities of Binary Solvent Mixtures of N-Methylacetamide with Aliphatic Alcohols. J. Chem. Eng. Data 1983, 28, 381-383.
Prausnitz, J. M.; Lichtenthaler, R. N.; de Azevedo, E. G. Molecular Thermodynamics of Fluid-Phase Equilibria; 2nd ed., Prentice-Hall: Englewood Cliffs, NJ, 1986.
Shiah, I. M.; Tseng, H. S. A Vapor Pressure Model for Aqueous Electrolyte Solutions Base on Mean Spherical Approximation. Fluid Phase Equilibria 1994, 90, 75-85.
Söhnel, O.; Novotný, P. Densities of Aqueous Solutions of Inorganic Substances; Elsevier Science, Amsterdam, Netherlands: New York, 1985.
Söhnel, O.; Novotný, P. Densities of Binary Aqueous Solutions of 306 Inorganic Substances. J. Chem. Eng. Data 1988, 33, 49-55.
Sun, T.; Teja, A. S. Density, Viscosity, and Thermal Conductivity of Aqueous Ethylene, Diethylene, and Triethylene Glycol Mixtures between 290 K and 420 K. J. Chem. Eng. Data 2003, 48, 198-202.
Triolo, R.; Grigera, J. R.; Blum, L. Simple Electrolytes in the Mean Spherical Approximation. J. Phys. Chem. 1976, 80, 1858-1861.
Ullah, M. R.; Kerrleborough, C. F.; Gandhidasan, P. Effectiveness of Moisture Removal for an Adiabatic Counterflow Packed Tower Absorber Operating with CaCl2-Air Contact System. ASME J. Solar Energy Eng. 1988, 110, 98-101.
Union Carbide Corp.: Glycols, 1971.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊