跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 13:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊家寶
研究生(外文):JPow Yang
論文名稱:混合醇胺TEA + PZ水溶液吸收二氧化碳反應動力學數據量測研究
論文名稱(外文):Kinetics of the Absorption of Carbon Dioxide into Mixed Aqueous Solutions of Triethanolamine and Piperazine
指導教授:李夢輝李夢輝引用關係
指導教授(外文):Meng-Hui Li
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:127
中文關鍵詞:二氧化碳擬一級反應模式反應動力學化學吸收
外文關鍵詞:carbon dioxidekineticspseudo-first-order reactionabsorption
相關次數:
  • 被引用被引用:8
  • 點閱點閱:411
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用濕壁柱探討CO2與PZ水溶液、混合醇胺TEA + PZ水溶液的反應動力學,濃度範圍為PZ (0.23M; 0.46M; 0.69M; 0.92M) + H2O及 TEA (0.5 kmol‧m-3) + PZ (0.1-0.5 kmol‧m-3) + H2O及TEA (1.0 kmol‧m-3) + PZ (0.1-0.5 kmol‧m-3) + H2O。溫度範圍30、35及40aC, 操作壓力為常壓下。對於CO2,本研究以pseudo-first-order的模式來描述CO2與醇胺之反應動力行為,而對於PZ、TEA則皆使用一級反應的反應動力學模式來探討。相關的物理數據如黏度、密度、亨利常數以及擴散係數也ㄧ併量測。CO2亨利常數以及擴散係數是採用N2O類比法來推算。
由於PZ與CO2的反應速率常數在文獻上的結果差異甚大,因此在本研究中對於PZ水溶液與二氧化碳的反應動力學數據再加以量測,以期求得正確的反應速率常數。而在三級醇胺TEA中加入PZ來吸收CO2的反應動力學數據在文獻上尚未有探討則是我們以TEA + PZ + H2O這個系統來研究的另一主題。
由實驗結果可發現,本研究的實驗範圍符合擬一級反應之條件的假設,而且以一級反應可以用來合理解釋CO2與PZ、TEA的反應。CO2 與 PZ + H2O的反應速率常數經實驗結果和文獻上Bishnol and Rochell (2000)的結果相近,代表本實驗得到結果是正確的。另外由實驗結果我們可以得知,在TEA醇胺水溶液中,加入少量的PZ,確實能使系統的反應吸收速率大大提升。
本研究結果所得到的數據可以用來作為設計酸性氣體吸收設備的計算基礎。
The reaction kinetics of the absorption of CO2 into aqueous solutions of piperazine (PZ) and into mixed aqueous solutions of PZ and triethanolamine (TEA) and were investigated by a wetted wall column at 30 to 40 aC. For CO2 + PZ + H2O, the systems studied are aqueous 0.23, 0.46, 0.69, and 0.92 (kmol‧m-3 PZ) solutions; for CO2 + PZ + TEA + H2O, the systems considered are PZ (0.1, 0.2, 0.3, 0.4, and 0.5 kmol‧m-3) + TEA (0.5 and 1.0 kmol‧m-3) + H2O. The physical properties such as density, viscosity of the solutions and the solubility and diffusivity of nitrous oxide (N2O) in the aqueous alkanolamine solutions were also measured. The N2O analogy was applied to estimate the solubilities and diffusivities of CO2 in aqueous amine systems. Based on the pseudo-first-order for the CO2 absorption, the overall pseudo first-order reaction rate constants were determined from the kinetic measurements. For CO2 absorption into aqueous PZ solutions, the obtained second-order reaction rate constants for the reaction of CO2 with PZ are in a good agreement with the results of Bishnoi and Rochelle (2000). For CO2 absorption into mixed aqueous solutions of PZ and TEA, it was found that the addition of small amounts of PZ to aqueous TEA solutions has significantly effect on the enhancement of the CO2 absorption rate. A second-order reaction rate equation is applied to model the reaction of CO2 with PZ and the reaction of CO2 with TEA. The model is satisfactory to represent the CO2 absorption into mixed aqueous solutions of PZ and TEA. The result of this study can be used as a data base for calculating the gas absorption rate in the <a href="http://www.ntsearch.com/search.php?q=design&v=56">design</a> of the gas absorption apparatus using TEA + CO2 +H2O as absorbents.
目錄
摘要……………………………………………………………………Ⅰ
Abstract………………………………………………………………..Ⅱ
誌謝……………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅳ
表目錄…………………………………………………………………Ⅶ
圖目錄…………………………………………………………………Ⅹ
第一章 緒論…………………………………………………………..1
1-1 前言…………………………………………………………….1
1-2 醇胺的使用…………………………………………………….2
1-3 TEA與PZ的熱物性質………………………………………..3
1-3.1 TEA………………………………………………………...3
1-3.2 PZ…………………………………………………………..3
1-4 PZ混合醇胺水溶液文獻探討…………………………………4
1-5 研究動機……………………………………………………….7
第二章 原理與理論…………………………………………………13
2-1 反應動力學模式……………………………………………...13
2-1.1 CO2與水的反應……………………………..……………13
2-1.2 CO2與醇胺的反應…………………..……………………13
2-1.3 CO2與PZ的反應………………………………………...15
2-1.4 CO2與TEA + PZ + H2O的反應…………………………15
2-2 N2O類比理論…………………………………………………16
2-3 氣體吸收模式的探討………………………………………...18
2-3.1 物理吸收的模式………………………………………....18
2-3.2 化學吸收模式……………………………………………20
2-3.3 無因次群定義的由來……………………………………28
2-3.4 擬一級反應條件的推導…………………………………32
2-4 混合醇胺水溶液吸收模式探討……………………………...34
2-4.4 Jhaveri (1969)的吸收模式...……………………………...34
2-4.2 Rangwala et al. (1992)的吸收模式……………………….36
2-5 本實驗所採用的吸收模式…………………………………...38
2-5.1 CO2 + PZ + H2O....…………………………………..……38
2-5.2 CO2 + TEA + PZ + H2O…………………………………..39
2-6 相關物理數據回歸模式……………………………………...39
2-6.1 密度的計算回歸模式……………………………………40
2-6.2 黏度的計算回歸模式……………………………………41
2-6.3 亨利常數的回歸計算模式………………………………42
2-6.4 擴散係數的計算回歸模式……………………………....44
第三章 實驗………………………………………………………....46
3-1 實驗藥品……………………………………………………...46
3-2 密度的量測…………………………………………………...46
3-3 黏度的量測…………………………………………………...47
3-4 亨利常數的量測……………………………………………...47
3-5 擴散係數的量測……………………………………………...49
3-6 二氧化碳吸收的量測………………………………………...51
第四章 結果討論……………………………………………………56
4-1 CO2 + PZ + H2O…………………………………………….....56
4-1.1 密度和黏度的量測結果....……………………………....56
4-1.2 亨利常數的量測結果……………………………………56
4-1.3 擴散係數的量測結果……………………………………57
4-1.4 CO2 + PZ + H2O化學吸收的量測結果…….…………....58
4-2 CO2 + TEA + PZ + H2O………………….................................80
4-2.1 密度和黏度的量測結果....……………………………....80
4-2.2 亨利常數的量測結果……………………………………80
4-2.3 擴散係數的量測結果……………………………………81
4-2.4 CO2 + TEA + PZ + H2O化學吸收的量測結果……..…....82
第五章 結論………………………………………………………...115
符號說明…………………………………………………………….116
參考文獻…………………………………………………………….119
自 述…………………………………………………………….127
表目錄

Table 1-1. Commonly used alkanolamines. 9
Table 1-2. Literature review on the reaction of CO2 with aqueous blended amine solutions.. 10
Table 1-3. Literature data on the reaction of CO2 with aqueous TEA solutions. 11
Table 1-4. Literature review on the reaction of CO2 with aqueous PZ solutions. 12
Table 4-1. Densities and viscosities of PZ + H2O solutions. 62
Table 4-2. Parameters of density equation……………….……………...63
Table 4-3. parametersof viscosity equation 64
Table 4-4. Estimated solubility of CO2 in PZ + H2O using N2O analogy
68
Table 4-5. Parameters of the Henry's constant equation. 69
Table 4-6. Estimated diffusivity of CO2 in PZ + H2O using N2O analogy 72
Table 4-7. Parameters of the diffusivity equation 73
Table 4-8. Kinetics data obtained for CO2 in PZ + H2O solutions. 75
Table 4-9. Kinetic data for the absorption of CO2 in PZ + H2O solutions
76
Table 4-10. Diffusivity of amines in solutions used to calculate instantaneous enhancement factor for CO2 in PZ + H2O solutions 77
Table 4-11. Densities and viscosities of TEA (0.5 M) + PZ + H2O solutions.... 85
Table 4-12. Densities and viscosities of TEA (1.0 M) + PZ + H2O
solutions. 86
Table 4-13. Parameters for the densities and viscosities of pure fluids
... 87
Table 4-14. Parameters of the density equation 88
Table 4-15. Parameters of the viscosity equation 89
Table 4-16. Estimated solubility of CO2 in TEA (0.5 M) + PZ + H2O using N2O analogy 94
Table 4-17. Estimated solubility of CO2 in TEA (1.0 M) + PZ + H2O using N2O analogy. 95
Table 4-18. Parameters of the Henry’s constant equation 96
Table 4-19. Estimated diffusivity of CO2 in TEA (0.5 M) + PZ + H2O using the N2O analogy.. 99
Table 4-20. Estimated diffusivity of CO2 in TEA (1.0 M) + PZ + H2O using the N2O analogy.. 100
Table 4-21. Parameters of the diffusivity equation 101
Table 4-22. Kinetics data of CO2 in aqueous TEA (0.5 M) + PZ solutions. 104
Table 4-23. Kinetics data of CO2 in aqueous TEA (1.0 M) + PZ solutions 105
Table 4-24. Kinetics data for the absorption of CO2 in aqueous
TEA (0.5 M) + PZ solutions 106
Table 4-25. Kinetics data for the absorption of CO2 in aqueous
TEA (1.0 M) + PZ solutions 107
Table 4-26. Diffusivity of amines in solutions used to calculate instantaneous enhancement factor for CO2 in aqueous
TEA (0.5 M) + PZ solutions 108
Table 4-27. Diffusivity of amines in solutions used to calculate instantaneous enhancement factor for CO2 in aqueous
TEA (1.0 M) + PZ solutions 109
Table 4-28. Compare results in aqueous TEA (0.5 M) + PZ solution for Eq. 4-10 110
Table 4-29. Compare results in aqueous TEA (1.0 M) + PZ solution for Eq. 4-10 111
圖目錄

Figure 2-1. Enhancement factor for second order reaction plotted against Hatta number. (Drew et al., 1981) 23
Figure 2-2 Concentration profile for very slow reaction………………..24
Figure 2-3 Concentration profile for moderate reaction………………...25
Figure 2-4 Concentration profile for Moderate reaction in liquid film and fast reaction in bulk………………………………………….25
Figure 2-5 Concentration profile for Fast reacton occur in liquid film…26
Figure 2-6. Enhancement factor for second order reaction for Hatta number greater than 3 (Ha > 3). (van Krevelen and Hoftijzer, 1948) 27
Figure 2-7 Concentratuon profile for Instantaneous reaction…………...29
Figure 2-8 Concentration profile for gas reaction with liquid…………..31
Figure 2-9 Concentration profile for gas fast and completed reacted with liquid in liquid film…..…………………………………..….32
Figure 2-10 Concentration profile for one gas and two reactants : both fast pseudo-first-order reaction……………………………...35
Figure 3-1. Gay-Lussac pycnometer 52
Figure 3-2. Cannon-Fenske routine viscometer. 53
Figure 3-3. Schematic drawing of physical gas absorption apparatus. 54
Figure 3-4. Schematic drawing of wetted-wall column apparatus 55
Figure 4-1. Density of aqueous PZ solutions. 65
Figure 4-2. Viscosity of aqueous PZ solutions 66
Figure 4-3. Solubility of N2O in <a href="http://www.ntsearch.com/search.php?q=water&v=56">water</a> as a function of temperature 67
Figure 4-4. Solubility of N2O in aqueous PZ solutions.. 70
Figure 4-5. Diffusivity of N2O in <a href="http://www.ntsearch.com/search.php?q=water&v=56">water</a> as a function of temperature …71
Figure 4-6. Diffusivity of N2O in aqueous PZ solution 74
Figure 4-7. Pseudo-first-order apparent reaction rate constant for the reaction of CO2 with PZ + H2O solutions -…..……………………………………….…………………78
Figure 4-8. Arrhenius plot of k2,PZ as function of temperature……….…79
Figure 4-9. Density of aqueous TEA (0.5 M) + PZ solutions
90
Figure 4-10. Density of aqueous TEA (1.0 M) + PZ solutions
………..………………………………………………………91
Figure 4-11. Viscosity of aqueous TEA (0.5 M) + PZ solutions
………….….…………………………………………….……92
Figure 4-12. Viscosity of aqueous TEA(1.0 M) + PZ solutions
…………..................................................................................93
Figure 4-13. Solubility of N2O in aqueous TEA (0.5 M) + PZ solutions 97
Figure 4-14. Solubility of N2O in aqueous TEA (1.0 M) + PZ solutions 98
Figure 4-15. Diffusivity of N2O in aqueous TEA (0.5 M) + PZ solution 102
Figure 4-16. Diffusivity of N2O in aqueous TEA (1.0 M) + PZ solution 103
Figure 4-17. Pseudo-first-order apparent reaction rate for the reaction of CO2 with TEA (0.5M) + PZ + H2O solution . 112
Figure 4-18. Pseudo-first-order apparent reaction rate for the reaction of CO2 with TEA (1.0 M) + PZ + H2O solution.. 113
Figure 4-19. Arrhenius plot of k2,TEA as function of temperature.. 114
李夢輝,氣體淨化處理,化工,1996, 43, 78-88.
李夢輝,自排放氣中回收二氧化碳之技術,化工技術,2004, 12, 171-185.
Al-Ghawas, H. A.; Hagewlesche, D. P.; Ruiz-Ibanez, G.; Sandall, O. C. Physicochemical Properties Important for Carbon Dioxide Absorption in Aqueous Methyldiethanolamine. J. Chem. Eng. Data 1989, 34, 385-391.
Alvarez-Fuster, C.; Midoux, N.; Laurent, A.; Charpentier, J. C. Chemical Kinetics of the Reaction of CO2 with Amines in Pseudo m-nth Order Conditions in Polar and Viscous Organic Solutions. Chem. Eng. Sci. 1981, 36, 1513-1518.
Appl, M., U. Wanger, H. J. Henrici, K. Kuessner, F. Volkamer, and N. Ernst Neust. Remove of CO2 and / or H2S and / or COS From Gases Containing These Constituents. U. S. Patent No 4336233, 1982
Astarita, G.; Savage, D. M.; Longo, J. M. Promotion of CO2 Mass Transfer in Carbonate Solutions. Chem. Eng. Sci. 1981, 36, 581-588.
Astarita, G.; Savage, D. W.; Bisio, A. Gas Treating With Chemical Solvents; John Wiley & Sons: New York, 1983.
Barth, D.; Tondre, C.; Lappai, G.; Delpuech, J. J. Kinetic study of carbon dioxide reaction with tertiary amines in aqueous solutions. Journal of Physical Chemistry 1981, 85, 3660-3667.
Barth, D.; Tondre, C.; Delpuech, J. J. Kinetics and Mechanisms of the Reactions of Carbon Dioxide with Alkanolamines: A Discussion Concerning the Cases of MDEA and DEA. Chem. Eng. Sci. 1984, 39, 1753-1757.
Blauwhoff, P. M. M.; Versteeg, G. F.; van Swaaij, W. P. M. A Study on the Reaction between CO2 and Alkanolamines in Aqueous Solutions. Chem. Eng. Sci. 1983, 38, 1411-1429.
Blauwhoff, P. M. M.; Versteeg, G. F.; van Swaaij, W. P. M. A Study on the Reaction between CO2 and Alkanolamines in Aqueous Solutions. Chem. Eng. Sci. 1984, 39, 207-225.
Benitez-Garcia, J.; Ruiz-Ibanez, G; Al-Ghawas, H. A.; Sandall, O. C. On the Effect of CO2 Absorption in Tertiary Amines. Chem. Eng. Sci. 1991, 46, 2927-2931.
Caplow, M. J. Kinetics of Carbonate Formation and Break-down. Am. Chem. Soc. 1968, 90, 6795-6803.
Cheng –Hung Liao, Meng-Hui Li. Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine + N-methyldiethanolamine. Chem. Eng. Sci. 2002, 57; 4569-4582.
Clarke, J. K. A. Kinetics of Absorption of Carbon Dioxide in Monoethanolamine Solutions at Short Contact Times. Ind. Eng. Chem. Fundam. 1964, 3, 239-245.
Danckwerts, P. V. Significance of Liquid-Film Coefficients in Gas Absorption. Ind. Eng. Chem. 1951, 43, 1460-1467.
Danckwerts, P. V. Gas-Liquid Reactions; Mcgraw-Hill: New York, 1970.
Danckwerts, P. V. The Reaction of CO2 with Ethanolamines. Chem. Eng. Sci. 1979, 34, 443-446.
Daniel P. Hagewiesche, Sami S. Ashour, Hani A. Al-Ghawas and Orvile C. Sandall. Absorption of carbon dioxide into aqueous blends of monoethanolamine and N-methyldiethanolamine. Chem. Eng. Sci 1995, 50, 1071-1079.
Davidson, J. F.; Cullen, E. J. The Determination of Diffusion Coefficients for Sparingly Soluble Gases in Liquids. Trans. Inst. Chem. Eng. 1957, 35, 51-60.
Diaz, J. M.; Vega, A.; Coca, J. J. Diffusivities of CO2 and N2O in Aqueous Alcohol Solutions. J. Chem. Eng. Data 1988, 33, 10-12.
Donaldson, T. L, Nguyen, Y. N. Carbon Dioxide Reaction Kinetics and Transport in Aqueous Amine Membranes. Ind. Eng. Chem. Fundam. 1980, 19, 260-266.
Dong Joo Seo and Won Hi Hong. Effect of Piperazine on the Kinetics of Carbon Dioxide with Aqueous Solutions of 2-Amino-2-methyl-1-propanol. Ind. Eng. Chem. Res. 2000, 39, 2062-2067.
Doraiswamy, L. K.; Sharma, M. M. Heterogeneous Reaction: Analysis, Examples, and Reactor Design, Vol. 2; John Wiley & Sons: New York, 1984.
Drew, T. B.; Hoopes, Jr., J. W.; Cokelet, G. R.; Vermeulen, T. Advances in Chemical Engineering, Vol. 11; Academic Press: New York, 1981.
Duda, J. F.; Vrentas, J. C. Lamina Liquid Jet Diffusion Studies. AIChE J. 1968, 14, 286-294.
Edward, E. B.; Ashour, S. S.; Sandall, O. C. Kinetics and Modeling of Carbon Dioxide Absorption into Aqueous Solutions of Diethanolamine. Ind. Eng. Chem. Res. 1996, 35, 1107-1114.
Glasscock, D. A.; Critchfield, J. E.; Rochelle, G. T. CO2 Absorption / Desorption in Mixtures of Methyldiethanol-amine with Monoethanolamine or Diethanolamine. Chem. Eng. Sci. 1991, 46, 2829-2845.
Guo-Wen Xu, Cheng-Fang Zhang, Shu-Jun Qin, Wei-Hong Gao, and
Van Krevelen, D. W.; Hoftijzer, P. J. Int. Congr. Chim. Ind., 21st, Brussels, 1948, special No., 168.
Guo-Wen Xu, Cheng-Fang Zhang, Shu-Jun Qin, and Yi-Wei Wang. Kinetics Study on Absorption of Carbon Dioxide into Solutions of Actived Methyldiethanolamine. Ind. Eng. Chem. Res. 1992, 31, 921-927.
Guo-Wen Xu, Cheng-Fang Zhang, Shu-Jun Qin, Wei-Hong Gao, and Hua-Bin Liu. Gas-Liquid Equilibrium in a CO2-MDEA-H2O System and the Effect of Piperazine on it. Ind. Eng. Chem. Res. 1998, 37, 1473-1477.
Haimour, N.; Sandall, O. C. Absorption of Carbon Dioxide into Aqueous Methyldiethanolamine. Chem. Eng. Sci. 1984, 12, 1791-1796.
Haimour, N. M. Solubility of N2O in Aqueous Solutions of diethanolamine at Different Temperatures. J. Chem. Eng. Data 1990, 35, 177-178
Higbie, R. The Rate of Absorption of a Pure Gas into a Liquid During Short Periods of Exposure. Trans. Am. Inst. Chem. Eng. 1935, 35, 36-60.
Hikita, H.; Asai, S.; Ishikawa, H.; Honda, M. The Kinetics of Reaction of Carbon Dioxide with Monoethanolamine, Diethanolamine and Triethanolamine by a Rapid Mixing Method. Chem. Eng. J. 1977, 13, 7-12.
Hikita, H; Ishikawa, H.; Uku, K.; Tetsuya, M. Diffusivities of Mono-, Di-, and Triethanolamines in Aqueous Solutions. J. Chem. Eng. Data 1980, 25, 324-325.
Hsu, C. H.; Li, M. H. Densities of Aqueous Blended Amines. J. Chem. Eng. Data 1997a, 42, 502-507.
Hsu, C. H.; Li, M. H. Viscosities of Aqueous Blended Amines. J. Chem. Eng. Data 1997b, 42, 714-720.
Hua-Bing Liu, Cheng-Fang Zhang, and Guo-Wen Xu. A Study on Equilibrium Solubility for Carbon Dioxide in Methyldiethonalamine-Piperazine-Water Solution. Ind. Eng. Chem. Res. 1999, 38, 4032-4036.
Jhaveri, A. S.; Absorption of a Gas into a Solution Containing Two Reactions. Chem. Eng. Sci. 1969, 24, 1738-1740.
Jimmy Xiao, Chih-Wei Li, Meng-Hui Li. Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol + monoethanolamine. Chem. Eng. Sci. 2000, 55, 161-175
Jiun-Jie Ko, Tung-Chien Tsai, Chih-Yuan Lin, Hsiun-Min Wang, and Meng-Huu Li. Diffusivity of Nitrous Oxide in Aqueous Alkanolamine Solutions. J. Chem. Eng. Data 2001, 46, 160-165.
Kohl, A. L.; Riesenfeld, F. C. Gas Purification, 4th ed; Gulf: Houston, TX., 1985.
Laddha, S. S.; Danckwerts, P. V. Reaction of CO2 with Ethanolamines : Kinetics from Gas-Absorption. Chem. Eng. Sci. 1981, 36, 479-482.
Li, M. H.; Lie, Y. C., Densities and Viscosities of Solutions of Monoethanolamine + N-Methyldiethanolamine + Water and Mono-ethanolamine + 2-Amino-2-methyl-1-propanol + Water, J. Chem. Eng. Data 1994, 39, 444-447.
Li, M. H.; Lai, M. D. Solubility and Diffusivity of N2O and CO2 in (Monoethanolamine + N-Methyldiethanolamine + Water) and in (Monoethanolamine + 2-Amino-2-Methyl-1-Propanol + Water). J. Chem. Eng. Data 1995, 40, 486-492
Li, M. H.; Lee, W. C. Solubility and Diffusivity of N2O and CO2 in (Diethanolamine + N-Methyldiethanolamine + Water) and in (Diethanolamine + 2-Amino-2-Methyl-1-Propanol + Water). J. Chem. Eng. Data 1996, 41, 551-556.
Littel, R. J.; van Swaaij, W. P. M.; Versteeg, G. F. Kinetics of Carbon Dioxide with Tertiary Amines in Aqueous Solution. AIChE J. 1990, 11, 1633-1640.
Littel, R. J.; Versteeg, G. F.; van Swaaij, W. P. M. Solubility and diffusivity Data for the Absorption of COS, CO2, and N2O in Amine Solutions. J. Chem. Eng. Data 1992, 37, 49-55.
Littel, R. J.; Versteeg, G. F.; van Swaaij, W. P. M. Kinetics of CO2 with Primary and Secondary Amines in Aqueous Solutions- I Zwitterion Deprotonation Kinetics for DEA and DIPA in Aqueoys blend of Alkanolamines. Chem. Eng. Sci. 1992a, 47, 2027-2035.
Littel, R. J.; Versteeg, G. F.; van Swaaij, W. P. M. Kinetics of CO2 with Primary and Secondary Amines in Aqueous Solutions- II. Influence of Temperature on Zwitterion Formation and Deprotonation Rates. Chem. Eng. Sci. 1992b, 47, 2037-2045.
Nitta, T.; Tatsuishi A. and Katayama, T. Solubilities of Nitrogen in Mixed Solvents: Cyclohexane-iso-Octane and n-Propanol-iso-Octane Mixture J. Chem. Eng. Jpn. 1973, 6, 475
Pagano, J. M.,Goldberg, D. E., & Fernelius, W. C. A Thermodynamic study of homopiperzine, piperzine, and N-(2-aminoethyl)-piperazine and their complexes with copper (Ⅱ) ion. J. Phys. Chem. 1961, 65, 1062-1064.
Perry, R. H.;Chilton, C. H. Chemical Engineers’ Handbook, 6th ed.; McGraw-Hill: New York, 1984
Pinsent, B. R. W.; Pearson, L.; Roughton, F. W. J. The Kinetics of Combination of Carbon Dioxide with Hydroxide Ions. Trans. Faraday Soc. 1956, 52, 1512-1520.
Pikkarainen, L. Densities and Viscosities of Binary Solvent Mixtures of N-Methylacetamide with Aliphatlb Alcohols. J. Chem. Eng. Data 1983, 28, 381-383
Prausnitz, J. M.; Lichtenthaler, R. N.; de Azevedo, E. G. Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, 1986
Rangwala, H. A.; Morrell, B. R.; Mather, A. E.; Otto, F. D. Absorption of CO2 into Aqueous Tertiary Amine / MEA Solutions. Can. J. Chem. Eng. 1992, 70, 482-490.
Sada, E.; Kumazawa, H.; Butt, M. A. Chemical Absorption Kinetics Over A Wide Rang of Contact Time: Absorption of Carbon Dioxide into Aqueous Solutions of Mono-ethanolamine. AIChE J. 1976a, 22, 196-198.
Sada, E.; Kumazawa, H.; Butt, M. A. Hayahsi, D. Simultaneous Absorption of Carbon Dioxide and Hydrogen Sulfide into Aqueous Monoethanolamine Solutions. Chem. Eng. Sci. 1976b, 31, 839-841.
Sada, E.; Kumazawa, H.; Butt, M. A. Gas Absorption with Consecutive Chemical Reaction: Absorption of Carbon Dioxide into Aqueous Amine Solutions. Can. J. Chem. Eng. 1976c, 31, 421-424.
Sada, E.; Kumazawa, H.; Butt, M. A.; Lozano, J. E. Solubility and Diffusivity of Gases in Aqueous Solution of Amines. J. Chem. Eng. Data 1978, 23, 161-163.
Sada, E.; Kumazawa, H.; Han, Z. Q.; Matsuyama, H. Chemical Kinetics of the Reaction of Carbon Dioxide with Ethanolamines in Nonaqueous Solvents. AIChE J. 1985, 31, 1297- 1303.
Saha, A. K.; Bandyopadhyay, S. S.; Biswas, A. K. Solubility and Diffusivity of N2O and CO2 in Aqueous Solutions of 2-Amine-2-methyl-1-propanol. J. Chem. Eng. Data 1993, 38, 78-82.
Saha, A. K.; Bandyopadhyay, S. S.; Biswas, A. K. Kinetics of Absorption of CO2 into Aqueous Solutions of 2-Amino-2-Methyl-1-Propanol. Chem. Eng. Sci. 1995, 50, 3587-3598.
Sanjay Bishnoi, Gary T. Rochelle. Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chem. Eng. Sci. 2000, 55, 5531-5543.
Sanjay Bishnoi, Gary T. Rochelle. Absorption of Carbon Dioxide in Aqueous Piperazine / Methyldiethanolamine. AIChe J. 2002, 48, 2778-2799.
Sanjay Bishnoi, Gary T. Rochelle. Thermodynamics of Piperazine / Methyldiethanolamine / Water / Carbon Dioxide. Ind. Eng. Chem. Res. 2002, 41, 604-612.
Sartori, G.; Savage, D. W. Sterically Hindered Amine for CO2 Removed from Gases. Ind. Eng. Chem. Fundam. 1983, 22, 239-249.
Sartori, G.; Ho, W. S.; Savage, D. W.; Chludzinski, G. R.; Wiechert, S., Sterically Hindered Amines for Acid-Gas Absorption, Separation and Purification methods 1987, 16, 171-200.
Shyh-Yun Horng and Meng-Hui Li. Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of Monoethanolamine + Triethanolamine. Ind. Eng. Chem. Res. 2002, 41; 257-266.
Snijder, E. D.; te Riele, M. J. M.; Versteeg, G. F.; van Swaaij, W. P. M. Diffusion Coefficients of Several Aqueous Alkanolamine Solutions. J. Chem. Eng. Data 1993, 38, 475-480.
Versteeg, G. F.; van Swaaij, W. P. M. Solubility and Diffusivity of Acid Gases (CO2, N2O) in Aqueous Alkanolamine Solutions. J. Chem. Eng. Data 1988a, 33, 29-34.
Versteeg, G. F.; van Swaaij, W. P. M. On the Kinetics between CO2 and Alkanolamines both in Aqueous and Non-Aqueous Solutions-I. Primary and Secondary Amines. Chem. Eng. Sci. 1988b, 43, 573-585.
Versteeg, G. F.; van Swaaij, W. P. M. On the Kinetics between CO2 and Alkanolamines both in Aqueous and Non-Aqueous Solutions-II. Tertiary Amines. Chem. Eng. Sci. 1988c, 43, 587-591.
Versteeg, G. F.; Oyevaar, M. H. The Reaction between CO2 and Diethanolamine at 298 K. Chem. Eng. Sci. 1989, 44, 1264-1268
Wang, Y. W.; Xu, S.; Otto, F. D.; Mather, A. E. Solubility of N2O in Alkanolamines and in Mixed Solvents. Chem. Eng. J. 1992, 48, 31-40.
Xu, S.; Otto, F. D.; Mather, A. E. Physical Properties of Aqueous AMP Solutions. J. Chem. Eng. Data 1991, 36, 71-75.
Xu Zhang, Cheng-Fang Zhang, Shu-Jun Qin, and Zhi-Sheng Zheng. A kinetis Study on the Absorption of Carbon Dioxide into a Mixed Aqueous Solution of Methyldiethanolamine and Piperazine. Ind. Eng. Chem. Res. 2001, 40, 3785-3791.
Yih, S. M.; Shen, K. P. Kinetics of Carbon Dioxide Reaction with Sterically Hindered 2-Amino-2-Methyl-1-Propanol Aqueous Solutions. Ind. Eng. Chem. Res. 1988, 27, 2237-2241.
Yu, W. C.; Astarita, G. Selective Absorption of Hydrogen Sulphide in Tertiary Amine Solutions. Chem. Eng. Sci. 1985, 42, 419-424.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top