跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 21:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳振溢
研究生(外文):Chen-Yi Wu
論文名稱:以電場掃流微過濾分離酵母菌/牛血清蛋白混合懸浮液
論文名稱(外文):Crossflow Electro-Microfiltration of Yeast/BSA Mixture
指導教授:莊清榮莊清榮引用關係
指導教授(外文):Ching-Jung Chuang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:123
中文關鍵詞:牛血清蛋白酵母菌掃流微過濾電場蛋白質
外文關鍵詞:BSAproteinyeastcrossflow-microfiltrationelectro
相關次數:
  • 被引用被引用:5
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:1
摘要

在生化程序中,常須將發酵槽內之菌體粒子/蛋白質混合懸浮液進行固液分離,以利於下一階段之純化操作,傳統的分離方式為離心,但其缺點為無法連續式大量操作,雖然掃流過濾可改善此缺點,但過濾過程中,膜結垢及如何維持高的蛋白質穿透率則是另一個在工程應用上必須克服的問題。利用外加電場輔助掃流過濾已有廣泛探討,但對此類混合懸浮液之研究與應用則甚少觸及,本研究以酵母菌/BSA混合懸浮液為對象,探討電場強度及其它操作條件對其分離效能的影響。
除菌體粒子與蛋白質分子之帶電性受pH值影響外,膜材的電性亦深受影響,故粒子及蛋白質之電泳與膜材之電滲透等作用,其程度必隨pH 值及施加電場強度而變化。在pH=4~7之實驗範圍內,酵母菌(1000 ppm)/BSA(1000 ppm)之濾速皆約隨電場強度提高而呈線性增加,經由與穩定濾速理論模式及濾餅量之量測結果相比較,可判定該混合懸浮液中,菌體粒子之電動行為可以單成分之酵母菌特性描述之。由於濾餅層具有攔阻蛋白質團的功能,故該混合懸浮液過濾後,膜面被BSA阻塞的程度明顯低於BSA溶液過濾者。蛋白質穿透率受電場強度及pH值的影響相當大,若 BSA帶負電,其電泳作用為遠離膜面,穿透率會有明顯下降;若BSA帶正電,則其朝向膜面之電泳作用結果,穿透率會大幅增加,最高可達120%。
在BSA濃度固定1000 ppm而酵母菌濃度500~1500 ppm且未施加電場時,濾速隨菌體濃度提高而遞減,但穿透率則相反,整體蛋白質回收量以酵母菌(500 ppm)者最高,在電場作用下,酵母菌(500 ppm)/BSA(1000 ppm)之濾液量較酵母菌(1000 ppm)/BSA(1000 ppm)者多,但隨著電場強度提高此增加量會遞減,蛋白質穿透率皆稍低於酵母菌(1000 ppm)者。使用孔徑0.2及0.45 μm兩種膜材之結果,兩者之穩定濾速相似,而使用0.45 μm膜材之BSA穿透率在電場操作範圍下皆可達100%以上,最高可達123%。
脈衝式電場操作之濾速介於未施加電場與固定式電場兩者之間,而其BSA穿透率則與固定式電場者相近,但於高電場強度時,脈衝式電場操作甚至具有較高之穿透率。於電場強度2000及3000 V/m時,脈衝式電場之電能消耗率較固定式電場者低14及23%,在實驗室小規模裝置中,電場過濾之電能消耗率高於未施加電場者,若將規模放大至工業級應用的話,預期應可大幅減少電場過濾之電能消耗率。
ABSTRACT

The separation of proteins from microbial cell suspension is generally an essential operation in the bio-product processes. Centrifugal sedimentation has been widely used for the separation, however, the difficulty in scale-up for its continuous operation is not yet overcomed. Although the crossflow filtration can improve the drawback and has fairly extensive application, but in the membrane filtration process there are some disadvantages like the occurrence of membrane fouling and the difficulty in maintaining high recovery of protein. A combination of crossflow shearing action and electric field has been developed and recognized as an effective means for reducing both concentration polarization and membrane deposition in crossflow filtration. But so far, the understanding of the principles of such process is still very limited, especially for the application in the biomaterial suspension separations. The objective of this study is to investigate the effects of electric field strength, electric field mode and other operation parameters such as pH and membrane pore size etc. on the filtration performance of BSA/yeast suspensions.
Experimental results from yeast (1000ppm)/BSA(1000ppm) suspensions in the pH range from 4 to 7 showed that its filtration rate increased almost linearly with the electric field strength. Based on the comparison of the measured steady-state filtration rates with that predicted from theoretical model, it was indicated that the electrophoretic mobility of yeast in pure yeast suspensions can be used in the prediction for the mixture.
Since the charge polarity and zeta potential of BSA will be varied with the pH, therefore both the electric field strength and the pH will give significant influences on its transmission. At pH=4 its electrophoretic mobility is directed toward to the septum and a 120% high transmission was obtained under the electric field strength of 2000V/m.
Filtration performance from two different pore size membranes, 0.2 and 0.45 μm, were also compared. Both gave similar results in steady-state filtration rate, but the larger pore membrane can maintain a BSA transmission over 100% , even to 123%, under the addition of electric field.
The average filtration rate of pulsed electric field mode with on(30)/off(30) is nearly the mean value between that of constant electric field and that without electric field. Both constant and pulsed electric field modes have similar BSA transmission under low electric field strengths, however the later will give higher transmission as higher electric field is applied. Although the energy consumption per unit mass of protein recoveried from the lab-scale electrofiltration is much larger than that from conventional crossflow filtration, but it can be expected that the energy consumption will be reduced significantly for the operation in a large scale process.
中文摘要..........................................1
英文摘要..........................................3
誌謝..............................................5
目錄.............................................6
圖表索引.........................................8
第一章 緒論......................................12
第二章 文獻回顧..................................15
2-1 掃流微過濾特性..............................15
2-1-1 生物細胞掃流過濾特性.....................16
2-1-2 蛋白質掃流過濾特性.......................18
2-2 蛋白質/生物粒子混合懸浮液過濾...............21
2-3 電場過濾....................................25
2-3-1 電場掃流超過濾...........................25
2-3-2 電場掃流微過濾...........................27
第三章 理論背景..................................31
3-1-1 電泳(electrophoresis)........................31
3-1-2電滲透(electroosmosis).......................32
3-2 濾面粒子之受力分析..........................35
3-3 電場作用下膜過濾濃度極化模式................40
3-4 溶質穿透率..................................42
第四章 實驗設備及步驟............................47
4-1 實驗裝置....................................47
4-2 實驗材料....................................50
4-3 實驗儀器....................................51
4-4 實驗步驟....................................52
4-4-1 建立溶液中蛋白質濃度與紫外線光譜儀吸收度之標準關係線...........................52
4-4-2 酵母菌/BSA混合懸浮液電場掃流過濾實驗...54
第五章 結果與討論................................56
5-1牛血清蛋白(BSA)溶液之電場掃流為過濾特
性.......................................56
5-2 酵母菌/BSA混合懸浮液之電場掃流過濾特性.....61
5-2-1 二次(動態)膜的影響......................62
5-2-2 pH值對濾速的影響.......................67
5-2-3 電場強度對穩定濾速的影響................78
5-2-4 蛋白質膜穿透率(transmission)..............80
5-2-5 酵母菌濃度對混合懸浮液電場過濾的影響....86
5-2-6 膜孔大小對混合懸浮液電場過濾的影響......91
5-2-7 脈衝電場操作特性........................96
5-2-8 電能消耗之探討.........................102
第六章 結論.....................................106
符號說明........................................108
希臘符號.........................................110
參考文獻........................................111
附錄A .........................................116
附錄B .........................................117
附錄C .........................................118
附錄D .........................................119
附錄E .........................................120



圖表索引
圖目錄

Fig.3-1 Variation of the constant f with κa for various zeta potentials.....34
Fig.3-2 Forces exerted on the depositing particle...........................36
Fig.3-3 Fi vs. κx form eq.(3-10) for yeast particles........................38
Fig.3-4 Macrosolute concentration polarization model for crossflow electro- ultrafiltration ...........................................................41
Fig.3-5 Schematic diagram of solute diffusion...............................44
Fig.4-1 Schematic diagram of electrocrossflow...............................48
Fig.4-2 Details of the electro-crossflow filter chamber.....................49
Fig.4-3 The calibration of BSA concentration and its OD280 by UV............53
Fig.5-1 Effect of electric field applied on the filtration rate for BSA solution with different pH values............................................57
Fig.5-2 SEM of filter cake surface for yeast/BSA mixture at pH=5 (× 5000X)…63
Fig.5-3 SEM of filter cake surface for yeast/BSA mixture at pH=5 (× 10000X)63
Fig.5-4 SEM of filter cake cross-section for yeast/BSA mixture at pH=5 (a) top layer of cake, (b) intermediate layer, (c) bottom layer (× 10000X)……… 65
Fig.5-5 SEM of membrane surface after 1 hr filtration of BSA solution at pH=5 (× 3000X)....................................................................66
Fig.5-6 SEM of membrane surface after removing filter cake layer for yeast/BSA mixture at pH=5 (× 4000X...........................................66
Fig.5-7 Effect of electric field strength on the filtration rate for yeast/BSA mixture at pH=7 and △P=0.1 bar...................................68
Fig.5-8 Effect of electric field strength on the filtration rate for yeast/BSA mixture at pH=5 and △P=0.1 bar...................................70
Fig.5-9 Effect of electric field strength on the filtration rate for yeast/BSA mixture at pH=4 and △P=0.1 bar...................................71
Fig.5-10 Variation of filtration rate of yeast/BSA mixture with various electric field strength interrupted after 1 hr operation at pH=4.............72
Fig.5-11 Variation of filtration rate including interruption of electric field and crossflushing of cake layer for yeast/BSA mixtures. 1: filtration with electric field, 2: interruption of electric field, 3: filtration with electric field, 4: crossflushing, 5: filtration with pulsed electric field........ 74
Fig.5-12 Js vs. (ve+JE=0) estimated with different zeta potentials of yeast from pure and mixture with centrifugated.....................................77
Fig.5-13 Variation of the steady-state filtration rate with electric field strengths for yeast/BSA mixture after 1 hr operation at different pH values.......................................................................79
Fig.5-14 Effect of electric field strength on the BSA transmission for yeast/BSA mixture at different pH values.....................................81
Fig.5-15 Effect of electric field strength on the Rm after 1 hr filtration of yeast/BSA mixtures at pH=4. (Rm of clean membrane is 5.5×1010 1/m)...........84
Fig.5-16 Effect of yeast concentration on the filtration rate for yeast/BSA(1000 ppm) mixture at pH=4 and △P=0.1 bar without electric field...........87
Fig.5-17 Variation of filtration rate for yeast(500 ppm)/BSA(1000 ppm) mixture (solid line) and yeast(1000 ppm)/BSA(1000 ppm) mixture (dashed line) at pH=4 and △P=0.1 bar.............................................................89
Fig.5-18 Variation of filtration rate for yeast(1000ppm)/BSA(1000ppm) mixture at pH=4 with different pore size membrane, 0.45 μm(solid line), 0.2 μm(dashed line) and △P=0.1 bar.......................................................92
Fig.5-19 Pesudo-steady state filtration rate vs. electric field strength for yeast/BSA mixture at pH=4 with two different pore membranes..................94
Fig.5-20 Variation of the filtration rate with time for yeast/BSA mixture at on(30)/off(30) pulsed electric field of E=2000 V/m.............................97
Fig.5-21 Variation of the filtration rate with time for yeast/BSA mixture at on(30)/off(30) pulsed electric field of E=3000 V/m.............................99
Fig.5-22 Effect of electric field mode on the BSA transmission of yeast/BSA mixture at pH=4.............................................................101





表目錄

Tab.5-1 Zeta potential (mV) of BSA and nylon66 membrane (PALL) pore at pH=4、5 and 7 in 0.001M phosphate buffer solution.....................................................................59
Tab.5-2 Permeate amount and BSA transmission for 1 hr filtration of BSA solution at different pH values with and without electric field applied......................................................................60
Tab.5-3 Zeta potential (mV) of BSA and yeast from pure solutions and that from mixture at different pH values..........................................76
Tab.5-4 BSA transmission、permeate amount and protein recovery for yeast/BSA mixture in 1 hr of filtration under different electric field strength........82
Tab.5-5 BSA transmission、permeate amount and protein recovery for yeast/BSA(1000 ppm) mixture at pH=4 under different yeast concentration...............88
Tab.5-6 BSA transmission、permeate amount and protein recovery for yeast(1000 ppm)/BSA(1000 ppm) mixture at pH=4 with different pore size membrane.........95
Tab.5-7 BSA transmission、permeate amount and protein recovery for yeast/BSA mixture under different electric field modes................................100
Tab.5-8 Energy consumption in the different units of the filtration system.103
Tab.5-9 Energy consumption for 1 hr filtration of yeast/BSA mixture with different electric field mode...............................................104
參考文獻
A. Claudia Sousa, Joaquim M.S. Cabral and Marilia Mateus, “Microfiltration of cutinase and Escherichia Coli cell fragment suspensions The role of the electrolyte environment on the development of dynamic cake layers ”, J. Membrane Sci., 207, p171~187, (2002)

Akay G., B. Keskinler, Y.K. Bayhan and E. Erhan, “Effect of ionic environment on the crossflow microfiltration behaviour of yeast suspensions”, J. Membrane Sci., 206, p351~360, (2002)

Anna Persson, Ann-Sofi Jonsson and Guido Zacchi, “Transmission of BSA during cross-flow microfiltration: influence of pH and salt concentration”, J. Membrane Sci., 223, p11~21, (2003)

Arora N. and R. H. Davis, “Yeast Cake as Secondary Membrane in Dead-end Microfiltration of Bovine Serum Albumin”, J. Membrane Sci., 92, p247~256, (1994)

Belfort G., R. H. Davis and A. L. Zydney, “The Behavior of Suspensions and Macromolecular Solutions in Crossflow Microfiltration”, J. of Membrane Sci., 96, pp1~58, (1994)

Blake N. J., Cumming I. W. and Streat M., “Prediction of Steady State Crossflow Filtration Using a Force Balance Model”, J. Membrane Sci., 68, p205~216, (1992)

Charles S. Parnham and Robert H. Davis, “Protein recovery from bacterial cell debris using crossflow microfiltration with backpulsing”, J. Membrane Sci., 118, p259~268, (1996)

Choi S. W., J. Y. Yoon, S. Haam, J. K. Jung, J. H. Kim and W. S. Kim, “Modeling of the Permeate Flux during Microfiltration of BSA- Adsorbed Microspheres in a Stirred Cell”, J. Colloid and Interface Sci., 228, p270~278, (2000)

Chuang C. J., Fang C. W. and Tung K. L., “Electro-Microfiltration of Colloidal Suspensions”, Sep. Sci. Tech., 38(4), p797~816, (2003)

Daufin G., FL. Kerherve, P. Aimar, D. Molle, J. Leonil and F. Nau, “Electrofiltration of Solution Amino Acids or Peptides”, Lait, 75, pp105~115, (1995)

Fillaudeau L. and H. Carrere, “Yeast Cell, Beer Composition and Mean Pore Diameter Impacts on Fouling Retention During Cross-Flow Filtration of Beer with Ceramic Membranes”, J. membrane Sci., 196, 39~57, (2002)

Guell C., P. Czekaj and R. H. Davis, “Microfiltration of Protein Mixtures and the Effects of Yeast on Membrane Fouling”, J. Membrane Sci., 155, p113~122, (1999)

Huotari H. M., I. H. Huisman and G. Tragardh, “Electrically Enhanced Crossflow Membrane Filtration of Oily Waste Water Using the Membrane as a Cathode”, J. of Membrane Sci., 156, pp49~60, (1999)

Iritani E., Y. Mukai and Y. Kiyotomo, “Effects of Electric Field on Dynamic Behaviors of Dead-end Inclined and Downward Ultrafiltration of Protein Solution”, J. of Membrane Sci., 164, pp51-57, (2000)

James R. Welty, Charles E. Wicks, Robert E. Wilson and Gregory Rorrer, “Fundamentals of Momentum, Heat, and Mass Transfer, 4th Edition”, John Wiley & Sons, Inc

Jiraratananon R., D. Uttapap and P. Sampranpiboon, “Crossflow Micro- filtration of a Colloidal Suspension with the Presence of Macro- molecules”, J. Membrane Sci., 140, p57~66, (1998)

J. Postlethwaite, S.R. Lamping, G.C. Leach, M.F. Hurwitz and G.J. Lye, “Flux and transmission characteristics of a vibrating microfiltration system operated at high biomass loading”, J. Membrane Sci., 228, p89~101, (2004)

Kobayashi K., H. Yukawa, M. Iwata and Y. Hosoda, “Fundamental Study of Electroosmotic Flow Through Perforated Membrane”, J. Chem. Eng. Japan, 12, pp466~471, (1979)

Kuberkar V. T. and Davis R. H., “Effects of Added Yeast on Protein Transmission and Flux in Cross-Flow Membrane Microfiltration”, Biotechnol. Prog, 15, p472~479, (1999)

Kuberkar V. T. and Davis R. H., “Modeling of Fouling Reduction by Secondary Membranes”, J. Membrane Sci., 168, p243~258, (2000)

Kuberkar V. T. and Davis R. H., “Microfiltration of Protein-Cell Mixtures with Crossflushing or backflushing”, J. Membrane Sci., 183, p1~14, (2001)

Kuo-Jen HWANG, Yung-Hsiung CHENG and Kuo-Lun TUNG, “Modeling of Cross-Flow Microfiltration of Fine Particle/Macromolecule Binary Suspension”, J. of Chemical Engineering of Japan, Vol. 36, No. 12, pp1488~1497, (2003)

Levesley J. A., M. Seggianni and M. Hoare, “Microfiltration of Protein from Clarified Yeast Cell Homogenate for the Recovery of a Soluble Product”, Sep. Sci. Tech., 35(5), pp633~649, (2000)

Lu W. M. and Hwang K. J., “Cake Foration in 2-D Cross Flow Filtration”, AIChE J., 41, p1443~1455, (1995)

Lu W. M. and Ju S. C., “Selective Particle Deposition in Cross-Flow Filtration”, Sep. Sci. Tech., 24, p517~540, (1989)

Mameri N., S. Oussedik, R. Yeddou, D. L. Piron, D. Belhocine, H. Lounici and H. Grib, “ Enhancement of Ultrafiltration Flux by Coupling Static Turbulence Promoter and Electric Field”, Separation and Purification Tech., 17, pp203~211, (1999)

Michael M. Meagher and Stiart M. Bailey, “Separation of soluble protein from inclusion bodies in Escherichia Coli lysate using crossflow microfiltration”, J. of Membrane Sci., 166, p137~146, (2000)

Muriel Mercier-Bonin and Christian Fonade, “Air-sparged microfiltration of enzyme/yeast mixtures: determination of optimal conditions for enzyme recovery”, Desalination, 148, p171~176, (2002)

Oussedik S., D. Belhocine, H. Grib, H. Lounici, D. L. Piron and N. Mameri, “Enhanced Ultrafiltration of Bovine Serum Albumin with Pulsed Electric Field and Fluidized Activated Alumina” Desalination, 127, pp59~68, (2000)

Radovich J. H. and B. Behnam, “Steady-State Modeling of Electro- ultrafiltration at Constant Concentration”, Sep. Sci. Tech., 20(4), pp315~ 329, (1985)

Turkson A. K., J. A. Mikhlin and M. E. Weber, “Dynamic Membranes. 1. Determination of Optimum Formation Conditions and Electrofiltration of Bovine Serum Albumin with a Rotating Module”, Sep. Sci. and Tech., 24, pp1261~ 1291, (1989)

Turkson A. K., J. A. Mikhlin and M. E. Weber, “Dynamic Membranes. Ⅱ. Concentration Effects on Reflection Coefficient and Specific Resistance of Bovine Serum Albumin “Gel” Layer ”, Sep. Sci. Tech., 25 (1&2), pp31~44, (1990)

Visvanathan C. and Aim R. B., “Application of an Electric Field for the Reduction of Particle and Colloidal Membrane Fouling in Crossflow Microfiltration”, Sep. Sci. Tech., 24, p383~398, (1989)

Wakeman R. J. and M. N. Sabri, “Utilizing Pulsed Electric Fields in Crossflow Microfiltration of Titania Suspensions”, Trans IChemE, 73, pp455~463, (1995)

Wakeman R. J. and C. J. Williams, “Additional techniques to improve microfiltration”, Separation and Purification Technology, 26, p3~18, (2002)

Weigert T., J. Altmann and S. Ripperger, “Crossflow Electrofiltration in Pilot Scale”, J. of Membrane Sci., 159, pp253~262, (1999)

Wickramasinghe S.R., Yanling Wu and Binbing Han, “Enhanced microfiltration of yeast by flocculation”, Desalination, 147, p25~30, (2002)

Yang G. C.C., T. Y. Yang and S. H. Tsai, “Crossflow electromicro- filtration of oxide CMP wastewater”, Water Research, 37, p785~792, (2003)

Yukawa H., K. Shimura, A. Suda and A. Maniwa, “ Cross Flow Electro- Ultrafiltration for Colloidal Solution of Protein”, J. of Chem. Eng. Japan, 16(4), pp305~311, (1983)

Zydney A. L. and Sean T. Kelly, “Mechanisms for BSA fouling during microfiltration”, J. of Membrane Sci., 107, p115~127, (1995)

呂維明和呂文芳,“過濾技術”,高立圖書,台北(1994)

莊清榮,“迴轉盤式掃流過濾機構之研究”,博士學位論文, 台灣大學化工所 (1988)

黃國楨,“濾餅成長機構之微觀解析”,博士學位論文, 台灣大學化工所 (1992)

方俊為,“懸浮液離子濃度對電場掃流過濾之影響”,碩士學位論文,中原大學化工所 (1997)

龔文富,“以電場掃流過濾分離酵母菌懸浮液”,碩士學位論文,中原大學化工所 (1998)

謝旻樺,“以電場掃流超過濾分離牛血清蛋白溶液”,碩士學位論文,中原大學化工所 (1999)

陳信宇,“以脈衝式電場掃流超過濾分離牛血清蛋白溶液”,碩士學位論文,中原大學化工所 (2002)

陳冠廷,“脈衝電場掃流超過濾特性之探討”, 碩士學位論文,中原大學化工所 (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top