跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 06:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃順昶
研究生(外文):Shun-Chang Huang
論文名稱:應用中孔洞分子篩於重金屬萃取及其效能評估
論文名稱(外文):Extraction and Performance Evaluations for the Applaction of Mesoporous Molecular Sieves on Heavy Metal Remediation
指導教授:黃悉雅
指導教授(外文):Hsi-Ya Huang
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:89
中文關鍵詞:吸附中孔洞分子篩
外文關鍵詞:adsorptionMesoporous Molecular Sieves
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要應用中孔洞分子篩於重金屬及有機金屬萃取,利用中孔洞分子篩具有高表面積的特性,作為重金屬及有機金屬的吸附劑,再利用中孔洞分子篩表面修飾改質,使其表面具有胺基及EDTA共價鍵結,探討中孔洞分子篩表面在不同官能基對重金屬及有機金屬的萃取效能評估。
本研究利用吸附劑MCM-41、MCM-NH2及MCM-EDTA對錫、氯化三丁錫、醋酸鉛、醋酸鋅及乙烯丙酮鎘等溶液進行萃取分析,而重金屬及有機金屬分析係利用感應耦合電漿原子放射光譜儀、石墨爐原子吸收光譜儀及氣相層析質譜儀作為分析儀器,並搭配固相微萃取法於氣相層析質譜儀,結果顯示MCM-41,MCM-NH2和MCM-EDTA具有高表面積而形成物理吸附作用。中孔洞分子篩所修飾的胺基及EDTA上羧酸基可增加化學吸附作用,使得萃取能力為MCM-EDTA> MCM-NH2>MCM-41。pH值的改變會影響吸附質表面電荷及可離子化官能基存在的形態而影響吸附效率。對有機金屬的吸附,主要藉著疏水作用及物理吸附作用,不需表面修飾即可達到良好的吸附的效果。MCM-EDTA隨著pH值的升高導致中孔洞分子篩表面與EDTA官能基逐漸解離,使得吸附能力大幅下降,而降低表面修飾的價值。
本實驗對醋酸鉛進行重覆萃取分析,相對百分偏差從0.0% ~ 10.7%,而對乙烯丙酮鎘、醋酸鉛及醋酸鋅進行添加回收率測試,回收率依序為94.5%、104.5%及97.1%,確定萃取實驗過程無明顯偏差及無樣品基質效應。
The extraction efficiencies and performance evaluations for the application of a mesoporous molecular sieves, MCM-41, on heavy metal remediation were studied in this research. With its high surface area, MCM-41 is a good candidate for physisorbing and/or chemisorbing heavy metals and organometals. The effect of modifying the MCM-41 surface on the extraction efficiencies and performance was also undertaken by chemically changing the surface functional group to amino or EDTA ligands.
MCM-41, MCM-NH2, and MCM-EDTA were used as adsorbent with solutions including tin, tributyltin chloride, lead acetate, zine acetate, and cadmium acetylacetonate. Heavy metals and organometals were quantitated by ICP-AES, GFAAS and SPME/GC methods. The results show that the order of extraction efficiency is MCM-EDTA > MCM-NH2 > MCM-41, indicating that the covalent grafting of ligating NH2 and COOH functional groups on the MCM-41 surface could enhance chemisorption.
The adsorbing efficiency of the metals is affected by pH value due to the charge of the surface of the adsorbate and the morphology of the functional group. Adsorption capacity of MCM-EDTA was found to decrease with increase in pH value, which is very likely due to dissociation of EDTA from the MCM surface. For organometal adsorption, the most significant effects come from hydrophobic interaction and physisorption. Thus, unmodified MCM-41 also shows high adsorption efficiency for organometals.
Duplicate studies on the extraction efficiency of lead acetate yield relative standard deviations of 0.0 to 10.7 %, indicating satisfactory reproducibility. Matrix spike studies were done on cadmium acetylacetonate and zinc acetate besides lead acetate. The matrix spike recovery results are 94.5, 97.1, and 104.5%, respectively, indicating that the matrix does not have major interfering capacity.
本文目錄

第一章 緒論
1-1 研究緣起
1-2 重金屬對環境的影響
1-3 吸附理論
1-4 中孔洞分子篩的應用
1-5 萃取分析儀器應用簡介
1-6 研究目的

第二章 分析原理及方法
2-1 感應耦合電漿放射光譜儀
2-1-1 感應耦合電漿放射光譜儀分析原理
2-1-2 感應耦合電漿放射光譜儀操作方法
2-2 石墨爐式原子吸收光譜儀
2-2-1 石墨爐式原子吸收光譜儀發展
2-2-2 石墨爐式原子吸收光譜儀設計原理
2-2-3 石墨爐式原子吸收光譜儀操作方法
2-3 氣相層析儀
2-3-1 氣相層析儀原理
2-3-2 氣相層析儀操作方法
2-4 質譜儀
2-5 固相微萃取法
2-5-1 固相微萃取法的簡介
2-5-2 固相微萃取法的萃取原理
2-5-3 頂空式固相微萃取法
2-5-4 浸入式固相微萃取法
2-5-5 固相微萃取法的影響因子探討
2-5-6 樣品的衍生化程序
2-5-7 固相微萃取操作方法

第三章 實驗部份
3-1 實驗藥品與一般實驗設備
3-2 中孔洞分子篩MCM-41、MCM-NH2及MCM-EDTA的合成
3-2-1 中孔洞分子篩MCM-41的合成
3-2-2 中孔洞分子篩MCM-NH2的合成
3-2-3 中孔洞分子篩MCM- EDTA的合成
3-3 萃取方法及步驟

第四章 結果與討論
4-1 MCM-41對金屬及有機金屬吸附特性探討
4-2 MCM-NH2對金屬及有機金屬吸附特性探討
4-3 MCM-EDTA對金屬及有機金屬吸附特性探討
4-4 吸附劑MCM-41、MCM-NH2及MCM-EDTA特性探討
4-5 萃取重覆及添加分析結果
4-6 氯化三丁錫分析結果說明

第五章 結論

圖目錄

圖1-1 M41S結構示意圖。a:MCM-41,b:MCM-48,c:MCM-50
圖1-2 由Firouzi et al.所提出的MCM-41形成機制
圖1-3 MCM-41修飾胺官能基且與過渡金屬Cu2+、Fe3+的配位示意圖
圖1-4 MCM-41修飾胺官能基且與過渡金屬Co2+配位示意圖
圖1-5 C60與MCM-NH2於孔洞內做共價鍵結示意圖
圖1-6 (a)MCM-NH2與(b) MCM-EDTA的反應路徑示意圖
圖2-1 頂空式/浸入式萃取法示意圖
圖2-2 手動式固相微萃取裝置示意圖
圖2-3 頂空式SPME萃取流程圖
圖2-4 頂空式SPME萃取及脫附示意圖
圖4-1 MCM-41與不同金屬溶液的固相萃取率
圖4-2 MCM-41與金屬離子的配位示意圖
圖4-3 MCM-41在不同pH值吸附示意圖
圖4-4 氯化三丁錫、醋酸鋅、醋酸鉛、乙烯丙酮鎘結構圖
圖4-5 醋酸鉛在水中解離情形
圖4-6 MCM- NH2與不同金屬溶液的固相萃取率
圖4-7 MCM- NH2與金屬離子的配位示意圖
圖4-8 MCM- EDTA與不同金屬溶液的固相萃取率
圖4-9 MCM- EDTA與金屬離子的配位示意圖
圖4-10 MCM-41、MCM-NH2及MCM-EDTA對錫金屬離子溶液的固相萃取率
圖4-11 MCM-41、MCM-NH2及MCM-EDTA對氯化三丁錫溶液的固相萃取率
圖4-12 MCM-41、MCM-NH2及MCM-EDTA對醋酸鋅溶液的固相萃取率
圖4-13 MCM-41、MCM-NH2及MCM-EDTA對醋酸鉛溶液的固相萃取率
圖4-14 MCM-41、MCM-NH2及MCM-EDTA對乙烯丙酮鎘溶液的固相萃取率
圖4-15 MCM-41、MCM-NH2及MCM-EDTA對醋酸鉛溶液的重覆固相萃取率
圖4-16 氯化三丁錫層析質譜圖
圖4-17 氯化三丁錫檢量線圖
圖4-18 工業區承受水體添加氯化三丁錫層析圖


表目錄

表1-1 我國環境保護署公告放流水標準及海洋放流水標準
表1-2 TBT 在環境中有害影響的程度
表1-3 各國訂定海水中氯化三丁錫的管制情形
表1-4 IUPAC孔洞大小的分類
表2-1 石墨爐的加熱溫控程序
表2-2 氣相層析儀烘箱升溫程式
表2-3 固相微萃取fiber 的種類及其應用
表2-4 頂空式固相微萃取條件
表4-1 MCM-41與不同金屬溶液的固相萃取率
表4-2 不同pH值下MCM-41表面淨電荷狀態
表4-3 MCM-NH2與不同金屬溶液的固相萃取率
表4-4 MCM-EDTA與不同金屬溶液的固相萃取率
表4-5 MCM-41、MCM-NH2及MCM-EDTA對錫金屬離子溶液的固相萃取率
表4-6 MCM-41、MCM-NH2及MCM-EDTA對氯化三丁錫溶液的固相萃取率
表4-7 MCM-41、MCM-NH2及MCM-EDTA對醋酸鋅溶液的固相萃取率
表4-8 MCM-41、MCM-NH2及MCM-EDTA對醋酸鉛溶液的固相萃取率
表4-9 MCM-41、MCM-NH2及MCM-EDTA對乙烯丙酮鎘溶液的固相萃取率
表4-10 MCM-41、MCM-NH2及MCM-EDTA對醋酸鉛溶液的重覆固相萃取率相對百分偏差
表4-11 乙烯丙酮鎘、醋酸鉛及醋酸鋅添加回收率
表4-12 MCM-41、MCM-NH2及MCM-EDTA對醋酸鉛溶液的重覆固相萃取率
表4-13 氯化三丁錫檢量線圖表
表4-14 氯化三丁錫環境樣品分析結果
1.Holleman AF; Wiberg E Lehrbuch der Anorganischen Chemie, Walter de Gruyter, Berlin, 1985, 868.
2.顏國清,食品安全學,藝軒圖書出版社, 1997, 116-121.
3.阮中清,活性微量元素,青春出版社, 1997, 69–80.
4.Zaichick V. Tsyb A. Matveenko E. Chernichenko I., Instrumental neutron activation analysis of essential and toxic elements in child and adolescent diets in the Chernobyl disaster territories of the Kaluga Region. Science of the Total Environment. Vol.192, No.3, 1996, 269-274.
5.Spevackova V. Kratzer K.; Cejchanova M.; Benes B., Determination of Some Metals in Biological Samples for Monitoring Purposes. Central European Journal of Public Health. Vol.5, No.4, 1997, 177-179.
6.Wojtalik, T. A., Accumulation of Mercury and its Compounds, J. WPCF, 1971, 43(6)1280.
7.L. Ebdon; S. J. Hill; C. Rivas, Organotin Compounds in Solid Waste:a Review of their Properties and Determination Using High-Performance Liquid Chromatography, J. Anal. Chem., 1998, 17,277.
8.H. Harion; M. Fukushima, Simultaneous Determination of Gas Chromatography, J. Anal. Chem., 1992, 264, 91.
9.高肇藩,衛生工程,第三版,台南市成功大學環境工程系, 1980,55-56.
10.陳吉平譯,最新毒理學,合計圖書出版社, 2000, 255-269.
11.唐瑞菁,船隻使用含有機錫的漆料對沿海生態的影響,環境科學技術教育專刊,第11期,1996,66.
12.張揚全,有機錫中毒之臨床表現,有機錫之環境健康風險研討會摘要,2000.
13.劉莉蓮,海貝變性與環境賀爾蒙,第一屆環境賀爾蒙與持久性有機污染物研討會摘要,2000,105.
14.Ecotoxicology of Organotin Compound, Critical Review in Toxicology, 1996, 26(1).
15.McBain, J. W., The Sorption of Gases and Vapours by Solids, Rutledge and Sons, London, ch. 5, 1932.
16.IUPAC Mannal of Symbols and Terminoligy, Appendix 2, Pt. 1, Collid and Surface Chemistry, Pure Appl. Chem., 1972, 31, 578.
17.Kresge, C. T.; Leonowice, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature, 1992, 359, 710.
18.Firouzi, A.; Kumar, D.; Bull, L. M.; Besier, T.; Sieger, P.; Huo, Q.; Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Sicol, J.; Margolese, D.; Stucky, G. D.; Chmelka, B. F. Science 1995, 267, 1138.
19.Her, R. K. The Chemistry of Silica, 1979 John Wiley, New York.
20.Tolbert, S. H.; Firouzi, A.; Stucky, G. D.; Chmelka, B. F. Science 1997, 278, 264.
21.Luan, Z.; Cheng, C. F.; Zhou, W.; Klinowski, J. J. Phys. Chem. 1995, 99, 1018.
22.Luan, Z.; Cheng, C. F.; He, H.; Klinowski, J. J. Phys. Chem. 1995, 99, 10590.
23.Luan, Z.; He, H.; Zhou, W.; Cheng, C. F.; Klinowski, J. J. Chem. Soc. Faraday Trans. 1995,91,2955.
24.Cheng, C. F.; He, H.; Zhou, W.; Klinowski, J.; Sousa GonValves, J. A.; Gladden, L. F. J. Phys. Chem. 1996, 100, 390.
25.Cheng, C. F.; Klinowski, J. J. Chem. Soc., Faraday Trans. 1996, 92, 289.
26.Cheng, C. F.; Alba, M. D.; Klinowski, J. Chem. Phys. Lett. 1996, 250, 32. 8.
27.Corma, A.; Navarro, M. T.; Pariente, J. P. J. Chem. Comm. 1994, 147.
28.Park, D. H.; Cheng, C. F.; Klinowski, J. J. Mater. Chem. 1997, 7, 159.
29.Raimondo, M.; Perez, G.; Sinibaldi M.; De Stefanis, A.; Tomlinson, A. A. G. Chem. Comm. 1997, 1343.
30.Liu, J.; Feng, X.; Fryxell, G. E.; Wang, L. Q.; Kim, A. Y.; Gong, M. Adv. Mater. 1998, 10, 161.
31.Carvalho, W. A.; Schuchardt, M. W. J. of Mole. Cata. A, 1999, 144, 91.
32.Sutra, P.; Brunel, D. Chem. Commun. 1996, 2485.
33.Diaz, J. F.; Jr, K. B. Chem. Commun. 1997, 9, 61.
34.W. A. Caralho et al. J of Molecular Catalysis A:Chemical, 1999, 144, 91.
35.Price, P. M.; Clark, J. H.; Macquarrie, D. J. J. Chem. Soc., Dalton Trans. 2000, 101.
36.Van Rhijn, W. M.; De Vos, D. E.; Sels, B. F.; Bossaert, W. D.; Jacobs, P. A. Chem. Commun. 1998, 317.
37.Impens, N.R.E.N.; van der Voort, P.; Vansant, E.F. Micropor Mesopor. Mat. 1999, 28, 217.
38.Kimura, T.; Saeki, S.; Sugahara, Y.; Kuroda, K. Langmuir 1999, 15, 2794.
39.Antochshuk, V.; Jaroniec, M. J. Phys. Chem. B 1999, 103, 6252.
40.Anwander, R.; Nagl, I.; Widenmeyer, M.; Engelhardt, G.; Groeger, O.; Palm, C.; Röser, T. J. Phys. Chem. B 2000, 104, 3532.
41.Wouters, B. H.; Chen, T. H.; Dewilde, M.; Grobet, P. J., Micropor. Mesopor. Mater. 2001, 44-45, 453.
42.Chia-Hung Lee.; Tien-Sung.; Chung-Yuan Mou., J. Chem. Phys. 2002, 3106-3111.
43.李俊義,分析化學,科技圖書股份有限公司, 1995, 115-118.
44.Douglas A Skoog; F. James Holler; Timothy A. Nieman, Principles of instrumental analysis (fifth edition), 1998, 234.
45.陳榮顯;楊末雄,感應耦合電漿原子發射光譜分析法,科儀產品新知,第7卷,第九期,1982,76-82.
46.林宏明;楊末雄,感應耦合電漿─原子發射光譜分析儀(ICP-AES)之介紹,科儀產品新知,第7卷,第九期,1982,64-75.
47.柯以侃,儀器分析 修訂版,文京圖書有限公司,台北,1997.
48.宋德高;凌永健,環境分析用氣相層析質譜術,化學,第四十九卷第四期,1991,331.
49.賀孝雍譯,儀器分析,曉園出版社,1980,573,581.
50.柯以侃,儀器分析,大揚出版社,1999,24-25.
51.方嘉德譯,儀器分析,滄海書局,2000,27-1~27-8.
52.李匡邦;許東明;何東英,光譜化學分析,國立編譯館,1997,332~334.
53.C. G. Arnold; M. Berg, S. R. Müller; U. Dommann; R. P., Schwarzenbach, Determination of Organotin Compounds in Water, Sediments, and Sewage Sludge Using Perdeuterated Internal Standards, Accelerated Solvent Extraction, and Larage Volume Injection GC/MS, J. Anal. Chem., 1998, 70, 3094.
54.J. Pawliszyn, Solid Phase Microextraction Theory and Practice, Wiley-VCH, New York, 1997.
55.Solid Phase Microextraction: Theory and Optimization of Conditions, Supelco, Bulletin 923 1-5, 1998.
56.Z. Zhang; J. Pawliszyn, Headspace Solid-Phase Microextraction, J. Anal. Chem., 1993, 1843-1852.
57.黃敬德;謝有容,固相微萃取法,科儀新知,第十八卷四期,1997,59-67.
58.黃寶慧;李茂榮,固相微量萃取法,科儀新知,第十八卷二期,1996,58-67.
59.H. Prosen; L. Zupancic-Kralj, Solid-Phase microextraction, J. Anal. Chem., 1999, 272-282.
60.Z. Zhang, M. J. Yang, J. Pawliszyn, Solid-Phase Microextraction A Solvent-Free Alternative for Sample Preparation, J. Anal. Chem., 1994, 844-852.
61.R. Eisert; K. Levsen, Solid-Phase Microextraction Coupled to Gas Chromatography: a New Method for the Analysis of Organics in Water, J. Chromatogr. , 1996, 143-157.
62.S. Tutschku; S. Mothes; R. Wennrich, Preconcentration and Determination of Sn-Organic and Pb-Organic Species in Environmental Samples by SPME and GC-AED, Fresenius J. Anal. Chem., 1996, 354, 587.
63.G. Lespes; V. Desauziers; C. Montigny; M. Potin-Gautier, Optimization of Solid-Phase Microextraction for the Speciation of Butyl- and Phenyltin Using Experimental Design, J. Chromatogr A, , 1998, 826, 67.
64.J. Vercauteren; A. D. Meester; T. D. Smaele; F. Vanhaecke; L. Moens, R. Dams ; P. Sandra, Headspace Solid-Phase Microextraction-Capillary Gas Chromatography-ICP Mass Spectrometry for the Organotin Pesticide Fentin in Environmental Samples, 2000, 15, 651.
65.E. Millan; J. Pawliszyn, Determination of Butyltin Species in Water and Sediment by Solid-Phase Microextraction-Gas Chromatography-Flame Ionization Detection, J. Chromatogr A, 2000,873, 63.
66.S. Aguerre; C. B. Montigny, G. Lespes; M. P. Gautier, Solid Phase Microextraction (SPME) : a New Procedure for the Control of Butyl- and Phenyltin Pollution in the Environment by GC-FPD, J. Analyst, 2000, 125, 263.
67.J. Poerschmann; F. D. Kopinke; J. Pawliszyn, Solid Phase Microextraction to Study the Sorption of Organotin Compounds onto Particulate and Dissolved Humic Organic Matter, Environmental Science & Technology, 1997, 31, 12.
68.M. Llompart; K. Li; M. Fingas, Headspace Solid-Phase Microextraction for the Determination of Volatile and Semi-Volatile Pollutants in Water and Air, J. Chromatogr. A, 1998, 53-61.
69.M. Llompart; K. Li; M. Fingas, Solid-Phase Microextraction and Headspace Solid-Phase Microextraction for the Determination of Polychlorinated Biphenyls in Water Samples, J. Anal. Chem., 1998 2510-2515.
70.SPME微固相萃取技術研討會,六合股份有限公司舉辦,2002年3月28日.
71.Y.K. Chau; S. Zhang; R. J. Maguire, Determination of Butyltin Species in Sewage and Sludge by Gas Chromatography-Atomic Absorption Spectrometry, Analyst, 1992,117, 1161.
72.黃裕髣,「中孔洞分子篩表面修飾及其重金屬萃取應用」,碩士論文,中原大學, 2003.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top