跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 15:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏志仁
研究生(外文):Chih-Jen Yen
論文名稱:微功率低偏移電壓積體電路設計於生醫信號處理之研究
論文名稱(外文):Micro-Power Low-Offset Integrated Circuit Design for Biomedical Signal Processing
指導教授:陳美麗陳美麗引用關係鍾文耀鍾文耀引用關係
指導教授(外文):Mely Chen ChiWen-Yaw Chung
學位類別:博士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:148
中文關鍵詞:類比信號處理器積體電路中度反轉區心電圖信號處理寬幅疊接組態動態偏移電壓消去技術
外文關鍵詞:wide- swing cascodeAnalog processor ICdynamic offset cancellationmoderate inversionECG signal processing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究提出以階層式的設計方法實現應用於心電圖信號監測系統之微功率類比信號處理器單晶片。對於高效能類比信號處理器設計所面臨的關鍵性問題,包括偏移電壓的降低、雜訊的性能、功率的消耗、以及取決於製程的限制,亦有進一步的分析與研究。以自行設計的高效能運算放大器為基礎,成功的開發出建構類比信號處理器所需的電路;包含了儀器放大器,增益放大器和開關電容低通濾波器。
本論文探討了一些電路設計的技術,用於改善類比信號處理器的效能。以自動歸零技巧為基礎,配合兩階段20 kHz驅動時脈的動態偏移電壓消去技術用來改善儀器放大器的非理想偏移電壓和低頻雜訊。利用中度反轉區偏壓技術設計運算放大器,以減小電路的功率消耗。寬幅疊接的電路架構用來改善VT 參考偏壓電路以提供類比信號處理器更精確的偏壓電流。分析結果顯示寬幅疊接的偏壓技術可以使運算放大器偏壓點設計受到製程變化的影響大幅降低。
類比信號處理器每一個子電路設計均以level-49 SPICE模型進行模擬。所有電路的性能皆以開發的測試晶片加以驗證。晶片的製作採用0.5 μm、雙層複晶矽雙層金屬之互補式金氧半電晶體製程,晶片面積僅有0.52 mm2。實驗結果證明以自動歸零技巧為基礎的動態偏移電壓消去技術所設計之儀器放大器可以實現低於180 μV的輸入偏移電壓和小於0.67 μVRMS的等效均方根輸入雜訊。
類比信號處理器積體電路可以操作於3.3至5伏特範圍的單電源電壓。工作於3.3伏特與5伏特電源電壓時,分別消耗了0.39 mW與0.75 mW的功率。處理器晶片工作於5伏特之電源電壓時,其等效均方根輸入雜訊為6.3 μVRMS,等效輸入偏移電壓為 –0.87 mV,且頻寬大於100 Hz。利用寬幅疊接的設計技術,在直流的狀況下可以得到非常高的共模拒斥比以及非常高的電源拒斥比。IC驗證結果顯示所有量測參數皆可符合設計時的規格需求。
任意波形產生器用來模擬輸入心電圖信號以進行IC功能的驗證。實驗證明類比信號處理器可以滿足心電圖信號監測系統應用的需求。由於具有低雜訊、低偏移電壓、低功率消耗以及晶片面積很小的優點,使得本論文所提出的類比信號處理器積體電路非常適用於心電圖信號處理。
This study devises a hierarchical design methodology for a micro power analog processor single-chip realization and its ECG-monitoring system applications. Critical issues relating to the design of a high-performance analog processor, including offset minimization, noise performance, power consumption and process-dependent limitations, are investigated. Based on the proposed high-performance operational amplifier, all building blocks of the processor IC are constructed successfully, including an instrumentation amplifier, gain amplifier and switched-capacitor low pass filter.
Design techniques are explored to enhance the circuit performance of the analog processor IC. The non-ideal offset voltage and the low-frequency noise of the instrumentation amplifier are improved using an autozero-based dynamic offset-cancellation technique involving a two-phase clocking scheme with a frequency of 20 kHz. Power dissipation is minimized using the moderate-inversion biasing operational amplifier design. The improvement of the VT reference bias circuit using the wide-swing cascode architecture provides a more accurate current for the processor IC. The analytical results demonstrate that the proposed reference generator can minimize the dependence of the operating points of operational amplifiers on process variations.
Computer simulation has been undertaken using the level-49 SPICE model for every module design of the processor IC. A test chip was developed to examine the design performance using a 0.5-�慆 double-poly double-metal CMOS technology, and has a size of just 0.52 mm2. Experimental outcomes prove that the instrumentation amplifier realizes a low input offset voltage of less than 180 μV and an equivalent RMS input noise maximum of 0.67 using the autozero-based dynamic offset-cancellation technique.
The analog processor IC can be operated at single supply voltage ranging between 3.3 and 5 Volts, and achieves low power consumption of 0.39 mW and 0.75 mW at supply voltages of 3.3 V and 5 V, respectively. This chip has an equivalent RMS input noise of 6.3 , a typical equivalent input offset voltage of –0.87 mV, and a bandwidth exceeding 100 Hz at a supply voltage of 5 V. A high common-mode rejection ratio and a high power-supply rejection ratio at DC are attained using the wide-swing cascode architecture. IC verification reveals that the analog processor meets the design specifications.
The functions of the proposed IC have been identified using the simulated input ECG signal. Experimental results demonstrate that this processor IC is appropriate for the ECG-monitoring system applications. The advantages of low noise, low offset, low power dissipation, and minimum chip size make the analog processor IC suitable for ECG signal processing.
Chapter 1 Introduction
1.1 Background and Motivation 1-1
1.2 Research Goals 1-8
1.3 Thesis Organization 1-8

Chapter 2 Critical Issues Concerning the Design of a High- Performance Analog Processor
2.1 Noise 2-1
2.2 Offset 2-4
2.3 Process-Dependent Limitation 2-5
2.4 Power Dissipation 2-7
2-5 IC Specifications 2-8
2-6 Design Considerations 2-12

Chapter 3 Design Approach and Circuit Implementation
3.1 Accurate Biasing 3-1
3.2 High-Performance Operational Amplifier Design 3-9
3.3 Autozero-Based Offset Compensation Scheme 3-27
3.4 Core Circuit Implementation 3-41
3.5 Test Chip Development 3-54

Chapter 4 Experimental Results
4.1 Testing Configuration 4-1
4.2 Performance Parameters 4-3
4.2.1 1/f Noise 4-3
4.2.2 Offset Voltage and DC Gain 4-10
4.2.3 Power Consumption 4-19
4.3 Function Verification 4-22
4.4 Discussion 4-33

Chapter 5 Conclusions and Future Works
5.1 Conclusions 5-1
5.2 Future Works 5-3

References

List of Illustrations
Fig. 1-1. Simplified block diagrams of a patient-monitoring system….………...1-3
Fig. 2-1. The schematic model of an electrode interface for ECG measurement..2-2
Fig. 2.2. Functional block diagrams of the proposed analog processor IC…….2-8
Fig 2-3. Typical circuit block diagrams for use in monitoring ECG signal….....2-11
Fig. 3-1. A conventional self-biased VT-reference circuit…………………..…...3-2
Fig. 3-2. Improved wide-swing cascode VT-reference circuit……………..…….3-4
Fig. 3-3. Comparison of error current between the conventional VT reference and the improved wide-swing cascode bias circuit with different error voltageΔVE….……………………………………….……………………….3-5
Fig. 3-4. Relationship between the bias current and the parameter “n” in the bias circuit design…………………………………….……………………..3-6
Fig. 3-5. Symmetrical layout of all BJTs in the bias circuit…………………....3-7
Fig. 3-6. Layout cross-section of a BJT in P-substrate CMOS technology……...3-8
Fig. 3-7. Schematic diagram of the two-stage rail-to-rail input/output OP……...3-9
Fig. 3-8. Parameters for calculating Vgs and Ids in the moderate inversion region………………………………………………………………...3-13
Fig. 3-9. Comparison between the simulated and measured drain current Id. The gate voltage of 1 V, 1.5 V and 2 V are applied to the test NMOS transistor.……………………………………………………………..3-14
Fig. 3-10. Comparison between the simulated and measured drain current Id in the weak-inversion region. A 0.5-V gate voltage is applied to the test NMOS transistor……………………………………..……………………….3-15
Fig. 3-11. Simulated static current of the designed OP at the supply voltages of (a) 3 V, and (b) 5 V, respectively.……………………………………..……3-21
Fig. 3-12. Simulated gain of the designed OP at the supply voltages of (a) 3 V, and (b) 5 V, respectively………………………………….……………….3-22
Fig. 3-13. Simulated phase margin of the designed OP at the supply voltages of (a) 3 V, and (b) 5 V, respectively……………………………….…..………3-23
Fig. 3-14. Simulated CMRR of the designed OP at the supply voltages of (a) 3 V, and (b) 5 V, respectively………………………………………………3-24
Fig. 3-15. Simulated PSRR+ of the designed OP at the supply voltages of (a) 3 V, and (b) 5 V, respectively………………………………………………3-25
Fig. 3-16. Simulated PSRR– of the designed OP at the supply voltages of (a) 3 V, and (b) 5 V, respectively………………………………………………3-26
Fig. 3-17. The IA incorporates with the new offset compensation circuitry…..3-30
Fig. 3-18. Nonoverlapping clock generator and clocking schemes for the offset- compensated IA……………………………………………..……….3-31
Fig. 3-19. Simulated step response of the proposed IA with the offset compensation at a supply voltage of 3.3 V…………………………………………..3-35
Fig. 3-20. Simulation made of the IA with an input sinusoidal signal at supply voltages of (a) 3.3 V, and (b) 5 V, respectively…………………..…..3-37
Fig. 3-21. Frequency response simulation of the IA in the TT case at supply voltages of (a) 3.3 V, and (b) 5 V, respectively……………………..………….3-39
Fig. 3-22. Simulation of the common-mode gain of the designed IA with offset cancellation at supply voltages of (a) 3.3 V, and (b) 5 V, respectively..3-40
Fig. 3-23. Schematic diagram of the designed GA……………………..……….3-42
Fig. 3-24. Simulation made of the GA with an input sinusoidal signal at supply voltages of (a) 3.3 V, and (b) 5 V, respectively…………..…………...3-44
Fig. 3-25. Frequency response simulation of the GA in the TT case at supply voltages of (a) 3.3 V, and (b) 5 V, respectively………………..……..3-45
Fig. 3-26. A continuous-time unity-gain second-order low pass filter………….3-47
Fig. 3-27. The equivalent resistance of a SC circuit…………………..…………3-48
Fig. 3-28. The fourth-order SCLPF realized in this study……………………….3-49
Fig. 3-29. Simulation made of the SCLPF with an input sinusoidal signal at supply voltages of (a) 3.3 V, and (b) 5 V, respectively……………………….3-51
Fig. 3-30. Simulated frequency response of the designed fourth-order SCLPF at a supply voltage of 3.3 V……………………………………………...3-52
Fig. 3-31. Schematic diagram of the integrated analog processor……..……..….3-55
Fig 3-32. Simulation results of the integrated analog processor circuit at the supply voltages of (a) 3.3 V, and (b) 5 V, respectively……………………….3-56
Fig. 3-33. A photomicrograph of the fabricated test chip………………..……...3-57
Fig. 4-1. Testing configuration of the fabricated test chip……………...………..4-2
Fig. 4-2. Measured output noise spectrum of the IA at a supply voltage of 3.3 V (a) without offset compensation, and (b) with offset compensation………4-4
Fig. 4-3. Measured output noise spectrum of the IA at a supply voltage of 5 V (a) without offset compensation, and (b) with offset compensation………4-5
Fig. 4-4. Measured output noise spectrum of the GA at supply voltages of (a) 3.3 V, and (b) 5 V, respectively………………………………….…………….4-7
Fig. 4-5. Measured output noise spectrum of the analog processor IC with offset compensation at supply voltages of (a) 3.3 V, and (b) 5 V, respectively.4-9
Fig. 4-6. Measured mean offset voltages of the IA at a supply voltage of 3.3 V (a) without offset compensation, and (b) with offset compensation……..4-11
Fig. 4-7. Measured mean offset voltages of the IA at a supply voltage of 5 V (a) without offset compensation, and (b) with offset compensation……..4-13
Fig. 4-8. Measured output signal of the IA with a square signal input of 40 mVP-P…………………………………………………………..…….4-14
Fig. 4-9. Measured offset voltage with an input common-mode voltage of 1.65 V DC at a supply voltage of 3.3 V………………………………..…….4-15
Fig. 4-10. Measured mean offset voltages of the GA at supply voltages of (a) 3.3 V, and (b) 5 V, respectively………………………………………………4-17
Fig. 4-11. Measured mean offset voltages of the SCLPF at supply voltages of (a) 3.3 V, and (b) 5 V, respectively………………………...…………………4-18
Fig. 4-12. Measured total static current consumption of the analog processor chip at supply voltages of (a) 3.3 V, and (b) 5 V, respectively…………...…..4-20
Fig. 4-13. Measured total dynamic current consumption of the analog processor chip at supply voltages of (a) 3.3 V, and (b) 5 V, respectively………….….4-21
Fig. 4-14. Measurement of the common-mode gain of the IA with an input sinusoidal signal at supply voltages of (a) 3.3 V, and (b) 5 V, respectively……………………………..……………………………4-23
Fig. 4-15. Measurement made of the IA with an input sinusoidal signal at a supply voltage of 3.3 V (a) without offset compensation, and (b) with offset compensation…………………………………………………………4-25
Fig. 4-16. Measurement of the IA with an input simulated ECG signal at a supply voltage of 3.3 V (a) with offset compensation, and (b) without offset compensation…………………………………………………………4-26
Fig. 4-17. Measurement made of the GA at a supply voltage of 3.3 V (a) with an input sinusoidal signal, and (b) with an input simulated ECG signal..4-28
Fig. 4-18. Measured frequency response of the SCLPF at a supply voltage of 3.3 V……………………………………………………………………4-29
Fig. 4-19. Measurement made of the analog processor IC at a supply voltage of 3.3 V (a) with an input sinusoidal signal, and (b) with an input simulated ECG signal……………………………………………………………4-30
Fig. 4-20. Measurement made of the analog processor IC at a supply voltage of 5 V (a) with an input sinusoidal signal, and (b) with an input simulated ECG signal………………………………………………………………….4-32
Fig. 5-1. Circuit implementations of (a) a GA, and (b) a fourth-order SCLPF that incorporate the offset compensation circuitry……………………..…...5-4

List of Tables
Table 1-1. Medical and physiological parameters.………………………..………1-4
Table 1-2. Comparison of the performance of several IAs in prior researches….1-6
Table 2-1. List of the pin description of the analog processor IC…………..…...2-9
Table 2-2. Specifications of the analog processor IC…………………………….2-10
Table 3-1. Critical parameters in the UMC 0.5-μm mixed-signal SPICE model.3-20
Table 3-2. Worst-case simulation of the designed OP……………………..……3-27
Table 3-3. Worst-case simulation of the designed IA…………………..……….3-41
Table 3-4. Worst-case simulation of the designed GA…………………………...3-46
Table 3-5. Worst-case simulation of the designed SCLPF……………………….3-53
Table 4-1. Measurements of the IA with offset compensation at supply voltages of 3.3 V and 5 V. (COS1 = COS2 = COS3 = 2 pF, R1 = R3 = 1 kΩ, R2 = R4 = 2 kΩ)………………………………………….…………………...4-34
Table 4-2. Comparison of the performance of several commercial IAs……..…..4-35
Table 4-3. Lists of the measurement results of the GA……………….………….4-35
Table 4-4. Measured characteristics of the SCLPF………………………………4-36
Table 4-5. Measured performance of the analog processor IC…………………..4-37
Table 4-6. Verification of the analog processor IC at a supply voltage of 3.3 V..4-38
Table 4-7. Verification of the analog processor IC at a supply voltage of 5 V…..4-39
[1] N. G. Einspruch, “VLSI Handbook – Handbook in Science and Technology,” Academic Press, 1986.
[2] N. G. Einspruch and R. D. Gold, “VLSI in Medicine – VLSI Electronics Microstructure Science,” Academic Press, 1989.
[3] C. –J. Yen, W. –Y. Chung, M. C. Chi, and S. –H. Lee, “A 0.75-mW Analog Processor IC for Wireless Biosignal Monitor,” in Proc. ACM/IEEE Int. Symp. on Low Power Electronics and Design, pp. 443-448, August 25-27, 2003, Seoul, Korea.
[4] W. –Y. Chung, K. –P. Lin, C. –J. Yen, C. –L. Tsai and T. –S. Chen, “Analog Processor Chip Design for the Bio-signal Readout Circuit Application,” in Proc. 1st Joint IEEE BMES/EMBS Conf., Vol. 2, pp. 881, October 13-16, 1999, Atlanta, GA, USA.
[5]C. –J. Yen, W. –Y. Chung, K. –P. Lin, C. –L. Tsai, S. –H. Lee and T. –S. Chen, “Analog Integrated Circuit Design for the Wireless Bio-signal Transmission System,” in Proc. 1st IEEE Asia-Pacific Conf. on ASICs, pp. 345-346, August 23-25, 1999, Seoul, Korea.
[6] Q. Huang and M. Oberle, “A 0.5-mW passive telemetry IC for biomedical applications,” IEEE J. Solid-State Circuits, Vol. 33, No. 7, pp. 937-946, July 1998.
[7] W. –Y. Chung, H. –S. Lin, et al., “Modular-based Design and Implementation of a Programmable Demand Pacemaker,” in Proc. 17th IEEE/EMBs Int. Conf., September 1995, Montreal, Canada.
[8] M. Steyaert and W. Sansen’ “Low-Power Monolithic Signal-Conditioning System,” IEEE J. Solid-State Circuits, Vol. 25, No. 2, pp. 609-612, April 1990.
[9] L. J. Stotts, K. R. Infinger, J. Babka and D. Genzer, “An 8-bit Microcomputer with Analog Subsystems for Implantable Biomedical Application,” IEEE J. Solid-State Circuits, Vol. 24, No. 2, pp. 292-300, April 1989.
[10] “A Solution to the Realization of a Patient Monitor,” application notes of the Intersil Co., Ltd., website: http://www.intersil.com/block_diagrams/Patient_Monitor.asp, 2004.
[11] J. G. Webster, "Medical Instrumentation: Application and Design," John Wiley & Sons, Inc., 1995.
[12] C. –W. Lu, “Low-Power High-Speed Class-AB Buffer Amplifier for Liquid-Crystal Display Signal Driver Application,” J. Circuits, Systems, and Computers, Vol 11, No. 4, pp. 427-444, August 2002.
[13] M. –C. Weng and J. –C. Wu, “A Compact Low-Power Rail-to-Rail Class-B Buffer for LCD Column Driver,” IEICE Trans. Electronics, Vol. J85-C, No. 8, pp. 1659-1663, August 2002.
[14] C. –W. Lu and C. –L. Lee, “A Low-Power High-Speed Class-AB Buffer Amplifier for Flat-Panel Display Application,” IEEE Trans. VLSI Systems, Vol. 10, No. 2, April 2002.
[15] P. –C. Yu and J. –C. Wu, “A Class-B Output Buffer for Flat-Panel-Display Column Driver,” IEEE J. Solid-State Circuits, Vol. 34, No. 1, pp.116-119, January 1999.
[16] S. –T. Chang, “Design and Implementation of Electrocardiograph Analog Signal Processing Unit,” Master thesis, Chung Yuan Christian University, Chungli, Taiwan, June 1997.
[17] L. –L. Huang, “Research on CMOS IC Design Technique for Low Frequency Analog Signal Processing Module Application,” Master thesis, Chung Yuan Christian University, Chungli, Taiwan, June 1998.
[18] C. –J. Yen, “Analog Integrated Circuit Design for Bio-Signal Measurement and Medical System Application,” Master thesis, Chung Yuan Christian University, Chungli, Taiwan, June 1999.
[19] R. C. Yen and P. R. Gray, “A MOS Switched-Capacitor Instrumentation Amplifier,” IEEE J. Solid-State Circuits, Vol. SC-17, No. 6, pp. 1008-1013, December 1982.
[20] D. A. Johns and K. Martin, “Analog Integrated Circuit Design,” John Wiley & Sons, Inc., 1997.
[21] C. Toumazou, G. Moschytz and B. Gilbert, “Trade-Offs in Analog Circuit Design – The Designer’s Companion,” Kluwer Academic Publishers, 2002.
[22] P. Kinget and M. Steyaert, “Analog VLSI Integration of Massive Parallel Signal Processing Systems,” Kluwer Academic Publishers, 1997.
[23] G. Wegmann, E. A. Vittoz and F. Rahali, “Charge Injection in Analog MOS Switches,” IEEE J. Solid-State Circuits, Vol. SC-22, No. 6, pp. 1091-1097. December 1987.
[24] P. R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, “Analysis and Design of Analog Integrated Circuits,” Fourth Edition, John Wiley & Sons, Inc., 2001.
[25] R. Gregorian, “Introduction to CMOS Op-Amps and Comparators,” John Wiley & Sons, Inc., 1999.
[26] R. Hogervorst, J. P. Tero, R. G. H. Eschauzier and J. H. Huijsing, “A Compact Power- Efficient 3V CMOS Rail-to-Rail Input/Output Operational Amplifier for VLSI Cell Libraries,” IEEE J. Solid-State Circuits, Vol. 29, No. 12, pp. 1505-1513, December 1994.
[27] P. Antognetti and G. Massobrio, “Semiconductor Device Modeling with SPICE,” McGraw-Hill Book Company, 1987.
[28] R. Hogervorst and J. H. Huijsing, “Design of Low-Voltage, Low-Power Operational Amplifier Cells,” Kluwer Academic Publishers, 1996.
[29] E. Vittoz and J. Fellrath, “CMOS Analog Integrated Circuits Based on Weak Inversion Operation,” IEEE J. Solid-State Circuits, Vol. SC-12, No. 3, pp. 224-231, June 1977.
[30] P. Antognetti, D. D. Caviglia and E. Profumo, “CAD Model for Threshold and Subthreshold Conduction in MOSFET’s,” IEEE J. Solid-State Circuits, Vol. SC-17, No. 3, pp. 454-458, June 1982.
[31] J. H. Huang, Z. H. Liu, M. C. Jeng, K. Hui, M. Chen, P. K. Ko and C. Hu, “BSIM3 Manual Version 2.0,” Dept. of EE and CS, Univ. California, Berkeley, March, 1994.
[32] P. E. Allen and D. R. Holberg, “CMOS Analog Circuit Design,” Oxford University Press, Inc., 2002.
[33] F. –T. Bai, “Subthreshold Region MOSFET Characteristic Analysis and Micropower Amplifier Design,” Master thesis, Chung-Yuan Christian University, Chungli, Taiwan, June 1995.
[34] E. A. Vittoz, “The Design of High-Performance Analog Circuits on CMOS Digital Chips,” IEEE J. Solid-State Circuits, Vol. SC-20, No. 3, pp. 657-665, June 1985.
[35] S. J. Lovett, M. Welten, A. Mathewson and B. Mason, “Optimizing MOS transistor mismatch,” IEEE J. Solid-State Circuits, Vol. 33, No. 1, pp. 147-150, January 1998.
[36] Y. P. Tsividis and K. Suyama, “MOSFET Modeling for Analog Circuit CAD: Problems and Prospects,” IEEE J. Solid-State Circuits, Vol. 29, No. 3, pp. 210-216, March 1994.
[37] E. P. Vandamme, P. Jansen, and L. Deferm, “Modeling the Subthreshold Swing in MOSFET’s,” IEEE J. Solid-State Circuits, Vol. 18, No. 8, pp. 369-371, August 1997.
[38]P. M. V. Peteghem, I. Verbauwhede and W. M. C. Sansen, “Micropower High- Performance SC Building Block for Integrated Low-Level Signal Processing,” IEEE J. Solid-State Circuits, Vol. SC-20, No. 4, pp. 837-844, August 1985.
[39]U. Schoeneberg, B. J. Hosticka and F. V. Schnatz, “A CMOS Readout Amplifier for Instrumentation Applications,” IEEE J. Solid-State Circuits, Vol. 26, No. 7, pp. 1077-1080, July 1991.
[40] C. Menolfi and Q. Huang, “A Fully Integrated, Untrimmed CMOS Instrumentation Amplifier with Submicrovolt Offset,” IEEE J. Solid-State Circuits, Vol. 34, No. 3, pp. 415-420, March 1999.
[41] M. Degrauwe, E. Vittoz and I. Verbauwhede, “A Micropower CMOS Instrumentation Amplifier,” IEEE J. Solid-State Circuits, Vol. SC-20, No. 3, pp. 805-807, June 1985.
[42]I. G. Finvers, J. W. Haslett and F. N. Trofimenkoff, “A High Temperature Precision Amplifier,” IEEE J. Solid-State Circuits, Vol. 30, No. 2, pp. 120-128, February 1995.
[43] M. –H. Liu and S. –I. Liu, “An 8-bit 10 MS/s Folding and Interpolating ADC Using the Continuous-Time Auto-Zero Technique,” IEEE J. Solid-State Circuits, Vol. 36, No. 1, pp. 122-128, January 2001.
[44] A. Bakker, K. Thiele, and J. H. Huijsing, “A CMOS Nested-Chopper Instrumentation Amplifier with 100-nV Offset,” IEEE J. Solid-State Circuits, Vol. 35, No. 12, pp. 1877-1883, December 2000.
[45] M. –C. Weng, “Design of CMOS Temperature Sensors,” Ph.D. dissertation, National Chiao-Tung University, Hsinchu, Taiwan, September 2002.
[46] C. C. Enz and G. C. Temes, “Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization”, Proceedings of the IEEE, Vol. 84, No. 11, pp. 1584-1614, November 1996.
[47] C. –J. Yen, W. –Y. Chung, and M. C. Chi, “Micro-Power Low-Offset Instrumentation Amplifier IC Design for Biomedical System Applications”, IEEE Trans. Circuits and Systems–I: Regular Papers, Vol. 51, No. 4, pp. 691-699, April 2004.
[48] K. R. Laker and W. M. C. Sansen, “Design of Analog Integrated Circuits and Systems,” McGraw-Hill Inc., 1994.
[49] R. Gregorian and G. C. Temes, “Analog MOS Integrated Circuits for Signal Processing,” John Wiley & Sons, Inc., 1986.
[50] “Low Cost, Low Power Instrumentation Amplifier,” AD620 data sheet of Analog Devices, Analog Devices Incorporated, 1999.
[51] “Precision Single Supply Instrumentation Amplifier,” AMP04 data sheet of Analog Devices, Analog Devices Incorporated, 2000.
[52] “Precision Gain of 5 Instrumentation Amplifier,” AD8225 data sheet of Analog Devices, Analog Devices Incorporated, 2003.
[53] “Low-power, Single-supply, CMOS Instrumentation Amplifiers,” INA332 data sheet of Burr-Brown Products from Texas Instruments, Texas Instruments Incorporated, 2001.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top