跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 09:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾憲聖
研究生(外文):Hsien-Sheng Tseng
論文名稱:利用最小平方平均誤差法則作盲目強制歸零等化
論文名稱(外文):Blind Zero-Forcing Equalization Based on MMSE Criterion
指導教授:張豫虎
指導教授(外文):Yuh-Huu Chang
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:63
中文關鍵詞:強制歸零條件盲目等化最小平方平均誤差法則
外文關鍵詞:Blind EqualizationMMSE CriterionZero-Forcing Condition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
盲目等化器在數位通訊領域中的應用日趨重要,利用過度取樣( oversampled )後的通道輸出信號,設計盲目等化器,近年來已成為一熱門的研究範疇。在T. Kailath等人提出藉由將接收到的信號過度取樣或利用陣列天線來接收信號等方式獲得週期信穩定特性的信號並透過特徵值分解的方式,做盲目通道辨識與等化後,許多基於單一輸入多重輸出系統模型與通道輸出的二階統計特性發展出的盲目等化演算法相繼問世。
在這篇論文中,我們提出一個應用強制歸零條件與最小平方平均誤差法則的盲目等化演算法,藉由讓各個不同時間延遲的強制歸零等化器輸出間的平方平均誤差值之總合最小,進而將全部不同時間延遲的強制歸零等化器計算出。此方法的優點在於不受通道係數矩陣是否為方陣之限制,皆能夠將所有等化器同時求出,由於直接求取等化器,因而減少通道辨識誤差對於信號估測上所造成的影響;透過電腦的模擬與分析,可以明確得知此新方法有不錯的效能表現。
Blind channel identification and equalization become important and popular in digital communication system. Since T. Kailath et al have proposed the algorithms utilizing the cyclostationary signal via oversampling the received signals or receiving signals by antenna arrays. A number of blind equalization methods based on SIMO system model and second order statistics of channel output have been developed.
In this paper, we derive a new algorithm for blind equalization based on zero-forcing condition and minimum mean square error criterion. Minimizing the mean square error based on the different delay equalizers’ output . All possible delay zero-forcing equalizers can be computed simultaneously without channel coefficients matrix estimation so that the influence of the channel identification is reduced. Simulations are presented to demonstrate adequate performance of the new blind equalization algorithm.
Abstract………………………………………………………………………………… I
中文摘要…………………………………………………………………………………II
Chapter 1. Introduction………………………………………………………………1
Chapter 2. Blind Identification and Equalization Based on Second-Order Statistic: A Time Domain Approach…………………………………………………3
I. Problem Statement…………………………………………………………3
II. Time Domain Algorithm Derivation…………………………………… 5
III. Simulations……………………………………………………………… 12
Chapter 3. Subspace Methods for the Blind Identification of Multichannel FIR
Filter…………………………………………………………………… 16
I. Problem Statement……………………………………………………… 16
II. Subspace-Based Parameter Estimation Scheme………………………18
III. Simulations……………………………………………………………… 22
Chapter 4. Direct Blind Equalizers of Multiple FIR Channels: A Deterministic
Approach………………………………………………………………… 26
I. Problem Statement……………………………………………………… 26
II. Direct Blind Equalization Algorithm Development……………… 29
III. Simulations……………………………………………………………… 33
Chapter 5. Blind Zero-Forcing Equalization Based on MMSE Criterion
I. Introduction………………………………………………………………36
II. Problem Statement……………………………………………………… 38
III. ZF-MMSE Algorithm Development……………………………………… 40
A. Equalization Ability…………………………………………………… 40
B. Algorithm Implementation In Noisy Condition………………………46
C. Selection Of The Best Delay Equalizer………………………………47
D. Computation Complexity………………………………………………… 48
IV. Simulations……………………………………………………………… 50
V. Conclusion…………………………………………………………………55
VI. Appendixes…………………………………………………………………56
Chapter 6. Conclusion……………………………………………………………… 63
Reference……………………………………………………………………………… 64
[1] K. Konstantinides, and K. Yao, “Statistical analysis of effective
singular values in matrix rank determination,” IEEE Trans. Acoustics,
Speech, and Signal Processing, vol. 36, pp. 757-763, May 1988.
[2] W. Gardner, ”A new method of channel identification,” IEEE Trans.
Commun., vol. COM-39, pp. 813-817, June 1991.
[3] L. Tong, G. Xu, and T. Kailath, “A new approach to blind identification
and equalization of multipath channels,” in Proc. 25th Asilomar Conf.,
1991, pp. 856-860.
[4] L. Tong, G. Xu, and T. Kailath, ”Fast blind equalization via antenna
arrays,” in Proc. IEEE ICASSP, 1993, vol. IV, pp. 272-275.
[5] L. Tong, G. Xu, and T. Kailath, “Blind identification and equalization
based on second order statistics: A time domain approach,” IEEE Trans.
Inform. Theory, vol. 40, pp. 340-349, Mar. 1994.
[6] G. Xu, H. Liu, L. Tong, and T. Kailath, “A least square approach to blind
channel identification,” IEEE Trans. Signal Processing, vol. 43, pp.
2982-2993, Dec. 1995.
[7] E. Moulines, P. Duhamel, J.-F. Cardoso, and S. Mayrargue, “Subspace
methods for the blind identification of multichannel FIR filters,” IEEE
Trans. Signal Processing, vol. 43, pp. 516-525, Feb. 1995
[8] S. Haykin, Adaptive Filter Theory. Third Edition, Prentice-Hall, Inc.,
1996.
[9] K.A.-Meraim, E. Moulines, and P. Loubaton, “Prediction error method for
second order blind Identification,” IEEE Trans. Signal Processing, vol.
45, pp. 694-705, Mar. 1997.
[10] G. B. Giannakis, and C. Tepedelenlioglu, “Direct blind equalizers of
multiple FIR channels: A deterministic approach,” IEEE Trans. Signal
Processing, vol. 47, pp. 62-74, Jan. 1999
[11] J. Shen, and Z. Ding, “Direct blind MMSE channel equalization based on
second order statistics,” IEEE Trans. Signal Processing, vol. 48, pp.
1015-1022, Apr. 2000.
[12] X. Li, and H. Fan, “Direct estimation of blind zero-forcing equalizers
based on second order statistics,” IEEE Trans. Signal Processing, vol.
48, pp.2211-2218, Aug. 2000.
[13] G. H. Goulub and C. F. Van Loan, Matrix Computations, Third Edition,
Baltimore, MD: John Hopkins Univ. Press,1996
[14] Y. H. Chang, T. L. Lin, “Blind Channel Identification Based on the Noise-
Free Correlation matrix” International Symposium on Communication 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top