跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 18:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉美華
研究生(外文):Mei-Hwa Liu
論文名稱:使用JPEG 2000完成使用接收端驅動之階層式Multicast影像傳輸系統
論文名稱(外文):Receiver-Driven Layered Multicast Image Transmission System Based on JPEG 2000
指導教授:黃文吉黃文吉引用關係
指導教授(外文):Wen-Jyi Hwang
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:70
中文關鍵詞:ROI 編碼階層式JPEG 2000JPEG 2000多重描述系統
外文關鍵詞:ROI codingmultiple description schemeJPEG 2000LJPEG 2000
相關次數:
  • 被引用被引用:1
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:1
摘要
由於網路蓬勃發展, 能提供不同碼率的多重碼率系統比以前重要. 多重碼率系統可分為兩大類: 正交與非正交系統. 本論文所提出兩種多重碼率系統: 階層式JPEG 2000 與多重描述系統, 這兩個系統又分別屬於正交累積與非正交非累積系統.
在階層式JPEG 2000的系統裡, 我們可獨立控制每一個階層的碼率與解析度, 為了要增加其編碼效能, 前幾層的編碼結果會被重覆利用. 在多重描述的系統裡 codeblock 會被分成兩群, 我們使用JPEG 2000獨立編碼這兩群的codeblock. 不管解碼端接收到那一群的資料, 都可用來還原一張圖. 當通道有雜訊時, 多重描述系統表現出較基本JPEG 2000 好的抗雜訊能力. 當通道無雜訊時, 多重描述系統的編碼效果幾乎跟基本的JPEG 2000一樣好.
為了增加影像編碼的彈性, 我們結和了階層式JPEG 2000 和ROI 編碼. 在這個系統裡, 傳送端先將低解析度的圖傳送給使用端, 讓使用端選擇他要的ROI區域與位移量, 使用端再將這些資訊傳回給傳送端. 傳送端再根據這些資訊, 再第二階段的傳送做ROI編碼的動作. 那麼使用端在還原這張圖時, 就會得到有ROI效果的影像.
關鍵詞: JPEG 2000, 階層式JPEG 2000, 多重描述系統, ROI 編碼
Abstract
With the increase use of networks, multirate transmission becomes important since it can produce a data stream in multiple data rates. Multirate transmission system can be divided into two groups: the orthogonal scheme and the non-orthogonal scheme.
This thesis presents two types of multirate image transmission system: the LJPEG 2000 and multiple description scheme which are categorized to orthogonal cumulative and non-orthogonal non-cumulative scheme, respectively.
In the LJPEG 2000, the rate and resolution associated with each layer can be pre-specified. The algorithm encodes an image one layer at a time using the modified JPEG 2000 technique. The encoding results at the previous layers will be used in the current layer to accelerate the encoding process.
In the multiple description scheme, the coefficients of each subband in the wavelet domain are divided into blocks, called codeblocks. These codeblocks are then partitioned into different groups, each group is a description of the original image, and is independently encoded using the JPEG 2000 technique. The decoders of the MD scheme can reconstruct the image by collecting the JPEG 2000 -encoded bitstreams from any group. MD attains comparable performance to basic JPEG 2000 for lossless channels. When the channels become lossy, it retains the rate-distortion performance for image reconstruction.
To increase the flexibility of image coding, we combine the LJPEG 2000 and the ROI coding. In this scheme, the transmitter first transmits the lowest resolution to the receiver. After the image is reconstructed in the receiver, the ROI is then specified, and the shape information is delivered back to transmitter. Then the transmitter sends the full resolution with the ROI area shift up. At this step, the transmitter also used the encoding results of the previous step. The receiver then reconstructs the image after shifting back the ROI area. This receiver-driven scheme benefits both the transmitter and the receiver.
Keywords: JPEG 2000, LJPEG 2000, multiple description scheme, ROI coding
Contents
Abstract……………………………………………………………………………….I
摘要……………………………………………………………………………...…..III
致謝…………………………………………………………………………………IV
List of Figures………………………………………………………………………..V
List of Tables………………………………………………………………………VII
Chapter1 Introduction…………………………………………...………….………1
1.1 Motivation and Background……………………………...………....…….1
1.2 Organization of the Thesis………………………………...………...…….3
Chapter2 JPEG 2000 Compression Algorithm and Receiver-Driven Multirate Transmission System……………………………………………...…...5
2.1 The JPEG 2000 Architecture…………………...……………….………..5
2.1.1 Image Tiling…………………………………………………….……7
2.1.2 DC Level Shifting…………………………………………...….……7
2.1.3 Component Transformations………………………………….……..7
2.1.4 Wavelet Transform………………………………………...………...9
2.1.5 Quantization………………………………………………...………11
2.1.6 Bitsteam Formation………………………………………..……….12
2.1.7 Entropy Coding………………………………………………...…..14
2.2 Multirate Transmission Schemes……………..…...…………...……….15
2.3 Non-Orthogonal Multirate Transmissions………...…….……….……..15
2.4 Orthogonal Multirate Transmission……………...…………...………...16
2.4.1 Orthogonal-Cumulative Encoding……….……………...…………17
2.4.2 Orthogonal Non-Cumulative Encoding……………………..……..17
2.5 Receiver-Driven System Based on JPEG 2000……..…………...……..19
Chapter 3 JPEG 2000-Based Resolution and Rate-Constrained Layered Image Transmssion……….………………………………………….…........20
3.1 Layered Image Transmission System………….………….………..…...21
3.2 Layered JPEG 2000 System…………..……………………….….….....22
3.3 JPEG 2000-Based Simulcast System………….……….……..........….....25
3.4 Simulation Results……………………………………………….….….27
Chapter 4 Multiple Description Transmission Based on JPEG 2000.….…...35
4.1 Error Resilience in JPEG 2000………………………..….………....…35
4.2 The Multiple Description Transmission System……...……….…...…..36
4.2.1 The Algorithm………………………………………………..……38
4.3 Simulation Results...…………………………………………………...41
Chapter 5 Receiver-Driven ROI Image System……………………………..47
5.1 ROI in JPEG 2000………………………………………………..…...47
5.2 The Combination of Layered JPEG 2000 and ROI…………….....…..49
5.3 Simulation Results……………………………………………….....…50
Chapter 6 Conclusion and Future Perspectives……………………...……..56
Reference…..………………………………………………………………..…57
作者簡歷……………………………………………………………………..60
List of Figures
Figure 2.1 General block diagram of the JPEG 2000 (a) encoder and (b) decoder…...6
Figure 2.2 Extension of Signals……………………………………………………….9
Figure 2.3 Uniform dead-zone scalar quantization…………………………………..11
Figure 2.4 The scanning order of a bit plane of a rectangle at the size of 8x8………12
Figure 2.5 Non-orthogonal Substreams……………………………………………...15
Figure 2.6 Orthogonal Substream……………………………………………………16
Figure 3.1 LIT system………………………………………………………………..19
Figure 3.2 The LJPEG 2000 schemes………………………………………………..22
Figure 3.3 JPEG 2000-based Simulcast System……………………………………..24
Figure 3.4 Original and reconstructed images of “House512” at each layer of LJPEG 2000. Left column: the original “House512” at each layer. Right column: the reconstructed “House 512” at each layer…………………………………………….27
Figure 3.5 Reconstructed versions of the image “Bar512” at layer 1, 2 and 3 encoded by column (a): LSPIHT and column (b):LJPEG 2000……………………………….28
Figure 3.6 Reconstructed images of (a) LJPEG 2000 and (b) JPEG 2000 based simulcast system type1……………………………………………………………….32
Figure 3.7 Reconstructed images of (a) LJPEG 2000 and (b) JPEG 2000 based simulcast system type2……………………………………………………………….33
Figure 4.1 The Multiple Description Scheme………………………………………..37
Figure 4.2 Partitioning the code blocks into two groups…………………………….39
Figure. 4.3 Comparing the original image with the reconstructed image of each system: (a) Original image, (b) Basic J2K I, (c) Basic J2K II, (d) J2K-MD………...41
Figure 5.1 Scaling of the ROI coefficients: (a) No ROI, (b) Scaling Based, (c) MAXSHIFT……………………………………………………..…………………...46
Figure 5.2 Wavelet domain ROI mask generation…………………………………...48
Figure 5.3 Receiver-Driven Image Transmission System……………………………49
Figure 5.4 Reconstructed Image of the second stage transmission with various shifting values: (a) U=0, (b) U=2, (c) U=4, (d) U=6………………………………………….51
Figure 5.5 Reconstructed Image based on various ROI sizes: (a) 5x5, (b) 10x10, (c) 20x20, (d) 30x30……………………………………………………………………..54
Figure 5.6 Reconstructed images in the first and second stage of transmission placed at the left and right column, respectively. There are three sets of rates: (a) =0.001, =0.01. (b) =0.002, =0.01. (c) =0.003, =0.01………………………….55

List of Tables
Table 2.1 The calculation of the contexts in the significance propagation pass and the cleanup pass…………………………………………………………………………..13
Table 2.2 The calculation of the contexts in the refinement pass…………………….13
Table 3.1 Performance of the LIT system realized by LSPIHT and LJPEG 2000 for various test images…………………………………………………………………...25
Table 3.2 Performance of JPEG 2000-based simulcast system I…………………….29
Table 3.3 Performance of JPEG 2000-based simulcast system II……………………30
Table 4.1 The performance of the two-channel MD system and the basic JPEG 2000 system with various wavelet decomposition levels n………………………………...41
Table 4.2 PSNR values of the three systems over binary symmetric channels with various BER values ………………………………………………………………...43
Table 4.3 PSNR values of various test images in the central decoder based on both the full-search and equal rate allocation schemes………………………………………..45
Table 5.1 PSNR values for various shifting values, U……………………………….51
Table 5.2 PSNR values of the second stages reconstructed image with various ROI sizes…………………………………………………………………………………..52
Table 5.3 The performance of the receiver-driven image transmission system for various and ……………………………………………………………………...53
Reference
[1] http:// www,jpeg.org/ JPEG2000.htm
[2] Athanassios Scodras, Charilaos Christopoulos, and Touradj Ebrahimi. “ The JPEG 2000 Sill Image Compression Standard,” IEEE Signal Processin Magazine 2001.
[3] C.A Christopoulos, J. A.N. Skodras, and T. Ebrahimi, “The JPEG 2000 still image coding system: An overview,” IEEE Trans. Consumer Electron., vol. 46, pp. 1103-1127, Nov. 2000.
[4] W.B. Pennebaker and J.L. Mitcell, JPEG: Still Image Data Compression Standard. New York: Van Nostrand Reinhod, 1993.
[5] V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards: Algorithms and Applications, 2nd ed. Norwell, MA: Kluwer, 1997.
[6] K.R. Rao and J.J. Hwang, Techniques and Stadards for Image, Video and Audio Coding. Englewood Cliffs, NJ: Prentice-Hall, 1996.
[7] V.K. Goyal, “Theoretical foundations of tansform coding,” IEEE Sig. Proc. Magazine, vol. 19, pp. 9-21, Sept. 2001.
[8] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using the wavelet transform,” IEEE Trans. Image Processing, pp. 205-220, Apr. 1992.
[9] M.D. Adams and, “Reversible wavelet transforms and their application to embedded image compression,” M.S. thesis, Univ. Victoria, Canada, 1998. Available http://www.ece.ubc.ca/mdadams/.
[10] W.Sweldens, “The lifting scheme: Construction of second generation wavelets,” SIAM. J.Math.Anal., vol.29,no.2, pp. 511-546, 1997.
[11] Core Experiment on Improving the Performance of the DCT: Results with Visual Quantization Method, Deblocking Filter and Pre-Post Processing, ISO/IEC JTC1/SC29/WG1 N742, Mar.1998.
[12] M.W. Marcellin, M. Gormish, A. Bilgin, and M. Boliek, :”An overview of JPEG 2000,” in Proc. IEEE Data Compression Conf., Snowbird, UT, Mar. 2000, pp. 523-541.
[13] D. Taubman, E. Ordentlich, M. Weinberger, G. Seroussi, I. Ueno, and F. Ono, “Embedded block coding in JPEG 2000,” in Proc. IEEE Int. Conf. Image Processing, Vancouver, Canada, Sept. 2000, vol. II, pp. 33-36.
[14] M. Novaes, P. Westerink, C. Codella, “Orthogonal Layered Multicast: Improving the Multicast Transmission of Multimedia Streams at Multiple Data Rates,” in IEEE, IBM T.J. Watson Research Center 30 Saw Mill River rd Hawthorne NY 10532, 2002.
[15] S. McCanne, V. Jacobson, and M. Vetterli. “ Receiver-Driven Layered Multicast”, Proceedings of ACM SIGCOMM ’96, pages 117-130, Stanford, CA, August 1996.
[16] D. Santa Cruz, T. Ebrahimi, M. Larsson, J Askelof, C. Cristopoulos, “ Region of Interest Coding In JPEG 2000 for Interactive Client/Server Applications,” Multimedia Signal Processing, 1999 IEEE 3rd Workshop on , 13-15 Sept. 1999, Pages:389 – 394.
[17] J.M. Shapiro, “Embedded Image Coding Using Zerotrees of Wavelet Coefficients,” IEEE Trans. Signal Processing, pp. 3445-3462, Vol.41, Dec. 1993.
[18] W.J. Hwang, C.F. Chine and K.J. Li, “Scalable Medical Data Compression and Transmission Using Wavelet Transform for Telemedicine Applications,” IEEE Trans, Information Technology in Bimedicine, pp. 54-63, Vol. 7, March 2003.
[19] D. Taubman and M.W. Marcellin, JPEG 2000 image compression fundamentals, standards and practice, Kluwar Academic Publishers, 2002.
[20] C.A.Cristopoulos, J. Askelof, and M. Larsson, “Efficient methods for encoding regions of interest in the upcoming JPEG 2000 still image coding standard,” IEEE Signal Processing Lett.,vol. 7, pp. 247-249, Sep. 2000.
[21] C.A. Christopoulos, J. Askelof, and M. Larsson, “ Efficient encoding and reconstruction of regions of interest in JPEG 2000,’ in Proc. X European Signal Processing Conf. (EUSIPCO-2000), Tampere, Finland, Sept. 2000, pp. 1133-1136.
[22] E. Atsumi and N. Farvardin, “ Lossy/lossless region-of-interest image coding based on set partitioning in hierarchical trees,” Proc. IEEE Int. Conf. Image Processing, Chicago, IL, Oct. 1998, pp. 87-91.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top