跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/20 16:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳聯瑞
研究生(外文):Lien-Jui Chen
論文名稱:複徑衰減通道及多用戶檢測下複碼多重進接系統之性能評估與分析暨五種序列估測法則
論文名稱(外文):Performance Evaluation of Multicode DS-CDMA Systems with Multiusers Detection over Nakagami-m Fading Channels and Five sequential detectors
指導教授:吳燦明
指導教授(外文):Tsan-Ming Wu
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:145
中文關鍵詞:cdma2000複徑衰減通道多用戶偵測複碼多重進接系統
外文關鍵詞:cdma2000multicode DS-CDMA systemmultiuser detectionmultipath fading channel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本篇論文分別針對反向鏈結之Nakagami-m衰減通道中,使用連續消減干擾器之非同調與同調複碼多重進接通信系統,進行個別系統之效能評估與理論建構。而本複碼通信系統其重大貢獻在於,提供如傳輸影音之多媒體服務,而本論文中,複碼通信系統分別採行cdma2000 RC1、cdma2000 RC2與cdma2000 RC3為標準,並針對Nakagami-m複徑衰減通道,進行評估通訊系統之優異性能。於爪耙接收機中,經過解調變以及連續消減干擾器程序後,多重進接干擾之影響將被抑制,因此增進通信系統之傳輸品質。由於多重進接干擾可視為高斯分佈,因此吾等可依此特性作為假設,進一步推得複碼系統其精確之機率錯誤率。最後,電腦程式模擬之數值分析依資料速率、用戶數,以及調整衰減模數值已達成模擬不同程度之衰減環境 (輕微、中等、嚴重及無訊號衰減),分別獲得不同變數因子下之精確實驗結果。
In this thesis, the performance analyses of noncoherent and coherent multicode DS-CDMA systems with successive interference cancellation for reverse links of the cdma2000 Radio Configurations 1 and 2, and 3 over Nakagami-m frequency-selective fading channels, respectively, are evaluated. The transmission system is intended to serve multi-rate multimedia applications suitable for data, voice, image, and video conveyance. Following demodulation employing RAKE receivers and the successive interference cancellations are applied to combat the multiple access interferers, which could be modeled as a Gaussian distribution, and thereby, the exact bit error rate of the system using a SIC technique with uncorrelated diversity branches over Nakagami-m channels may be derived. Numerical results via computer simulations over the Nakagami-m channel, which gives severe, moderate, light, and no fading environments via adjusting its fading figure, are also provided in terms of different data rates and number of users.
Contents

abstract iii
Acknowledgements iv
List of Tables vi
List of Figures vii
1 Introduction 1
1.1 Multiple Access Schemes for Multi-rate Multimedia Communications 1
1.1.1 Multicode Direct-Sequence Code Division Multiple Access 1
1.1.2 Multi-Carrier Code Division Multiple Access 2
1.1.3 Orthogonal Frequency Division Multiplexing Code Division Multiple Access 3
1.2 cdmaOne and cdma2000 4
1.2.1 cdmaOne (Based on IS-95A and IS-95B) 4
1.2.2 cdma2000 12
1.3 Overview of the Thesis 20
2 Performance Evaluation of Noncoherent Multicode DS-CDMA Systems for Reverse Links over Nakagami-m Fading Channels 21
2.1 Introduction 21
2.2 System Description 22
2.2.1 Transmitter Model 22
2.2.2 Channel Model 25
2.2.3 Receiver Model and Decision Metrics 25
2.3 Performance Analysis 31
2.3.1 Noise Analysis 31
2.3.2 Statistics of Decision Metrics and Error Probability 33
2.4 Effect of Correlated Nakagami Fading Channels 39
2.4.1 Equal Correlation Model 39
2.4.2 Exponential Correlation Model 41
2.5 Simulation Results 43
2.6 Conclusion Remarks 48
3 Performance Analysis of Successive Interference Cancellers for Noncoherent Multicode DS-CDMA Systems over Nakagami-m Fading Channels 54
3.1 Introduction 54
3.2 System Architecture 55
3.2.1 Transmitter Model 55
3.2.2 Channel Model 57
3.2.3 Receiver Model and Decision Metrics 58
3.2.4 Successive Interference Cancellation 59
3.3 Performance Analysis 64
3.3.1 Noise Analysis 64
3.3.2 Statistics of Decision Metrics and Error Probability 67
3.4 Simulation Results 73
3.5 Conclusion Remarks 74
4 Analysis of Multicode cdma2000 Systems with Successive Interference Cancellation over Nakagami-m Fading Channels 79
4.1 Introduction 79
4.2 Preliminaries 80
4.2.1 Transmitter Structure 80
4.2.2 Channel Model 82
4.2.3 Receiver Structure 83
4.2.4 Channel Estimation Error and Decision Metrics 85
4.2.5 Successive Interference Cancellation 90
4.3 Performance Analysis 96
4.3.1 Noise Analysis 96
4.3.2 Statistics of Decision Metrics and Error Probability 100
4.4 Simulation Results 105
4.5 Conclusion 106
5 Five sequential detectors 111
5.1 Introduction 111
5.2 MLSE 112
5.3 Adaptive MLSE 116
5.4 T/2-Spaced MLSE Receiver 118
5.5 Delayed Decision-Feedback Sequence Estimation 119
5.6 Reduced-State Sequence Estimation 121
6 Conclusions and Future Research 123
6.1 Establish the intact architecture of the multicode DS-CDMA system 124
6.2 The exact BER of the multicode system over Nakagami-m channels may be derived 124
6.3 Understand the effect of correlated fading channels 124
6.4 In comparison to performance of the single-user scheme and multiuser detection 125
6.5 Suggestions for Future Research 125
Bibliography 126
Vita 131

List of Tables

1.1 cdmaOne system features 7
1.2 System features of cdma2000 15

List of Figures

1.1 The transmitter and receiver architecture of a Multicode DS-CDMA system 2
1.2 The transmitter and receiver architecture of a Multi-Carrier CDMA system 3
1.3 Transmit functions of an IS-95 reverse link 8
1.4 Transmit functions on forward link in IS-95 10
1.5 Bandwidth requirements in cdma2000 13
1.6 cdma2000 transmitter structure for forward link 14
1.7 cdma2000 transmitter structure for Reverse link 17
2.1 The transmitter block diagram of the kth user of a multicode DS-CDMA system with M-ary modulation 24
2.2 The block diagram of the multicode DS-CDMA system with up-link channel models 26
2.3 An H-finger RAKE receiver 28
2.4 The configuration of the nth finger of the RAKE receiver for the noncoherent multicode DS-CDMA M-ary orthogonal signaling 29
2.5 The BER versus number of users for a Nakagami-m fading channel with independent diversity branches as m = 0.5 44
2.6 The BER versus number of users for a Nakagami-m fading channel with independent diversity branches as m = 1 45
2.7 The BER versus number of users for a Nakagami-m fading channel with independent diversity branches as m = 3.99 46
2.8 The BER versus number of users for a Nakagami-m fading channel with independent diversity branches as m = infty (no fading) 47
2.9 The BER versus number of users in a Nakagami fading channel with equal correlation 49
2.10 The BER versus number of users in a Nakagami fading channel with exponential correlation 50
2.11 The BER versus number of users in a Nakagami fading channel with linearly arbitrary correlation 51
2.12 The BER versus number of users in a Nakagami fading channel with circular correlation 52
3.1 The RAKE receiver of noncoherent multicode systems with successive interference cancellation 61
3.2 Under a severe fading environment, the multiuser scheme with SIC for the noncoherent multicode DS-CDMA signaling demonstrates a better performance than the single-user system 75
3.3 The multiuser counterpart with SIC outperforms well in comparison to the single-user scheme of the noncoherent DS-CDMA system under Rayleigh fading 76
3.4 In comparison to the single-user scheme of the noncoherent DS-CDMA system, the multiuser counterpart with SIC outperforms well under a light fading scenario 77
3.5 The multiuser scheme with SIC for the noncoherent multicode DS-CDMA signaling demonstrates a better performance than the single-user system under no fading environment 78
4.1 The transmitter block diagram of the kth user of a multicode cdma2000 system 81
4.2 The configuration of the nth finger of the RAKE receiver for the coherent multicode cdma2000 signaling 84
4.3 The RAKE receiver of multicode cdma2000 systems with successive interference cancellation 91
4.4 Under a severe fading environment, the multiuser scheme with SIC for the coherent multicode cdma2000 signaling demonstrates a better performance than the single-user system 107
4.5 Under Rayleigh fading, the multiuser counterpart with SIC outperforms well in comparison to the single-user scheme of the multicode cdma2000 system 108
4.6 In comparison to the single-user scheme of the coherent multicode cdma2000 system, the multiuser counterpart with SIC outperforms well under a light fading scenario 109
4.7 The multiuser scheme with SIC for the coherent multicode cdma2000 signaling demonstrates a better performance than the single-user system over no fading environment 110
5.1 Discrete-time white noise channel model with D-branch diversity 113
5.2 Block diagram of system that implements a filter matched to h(t) followed by a T/2-spaced sampler and a T/2-spaced noise whitening filter 118
[1] T. Ojanpera and R. Prasad, ``An Overview of Air Interface Multiple Access for IMT-2000/UMTS,' IEEE Commun. Mag., vol. 36, no. 9, pp. 82-95, Sep. 1998.
[2] E. Dahlman, B. Gudmundson, M. Nilsson, and J. Skold, ``UMTS/IMT-2000 Based on Wideband CDMA,' IEEE Commun. Mag., vol. 36, no. 9, pp. 70-80, Sep. 1998.
[3] TIA TR 45.5, ``The cdma2000 ITU-RTT Candidate Submission,' TR 45-ISD/98.06.02.03, May 1998.
[4] V. K. Garg, IS-95 CDMA and cdma2000 Cellular/PCS Systems Implementation, Upper Saddle River, NJ: Prentice Hall, 2000.
[5] C-L. I and R. D. Gitlin, ``Multi-Code CDMA Wireless Personal Communications Networks,' in Proc. IEEE Int. Conf. on Commun., Seattle, WA, June 18-22, 1995.
[6] C-L. I, G. P. Pollini, L. Ozarow, and R. D. Gitlin, ``Performance of Multi-Code CDMA Wireless Personal Communications Networks,' in Proc. IEEE Veh. Technol. Conf., Chicago, IL, 1995, pp. 907-911.
[7] C. D. Iskander and P. T. Mathiopoulos, ``Performance of Multicode DS/CDMA with Noncoherent M-ary Orthogonal Modulation in Multipath Fading Channels,' IEEE Trans. Wireless Commun., vol. 3, no. 1, pp. 209-223, Jan. 2004.
[8] K. Kim, ``On the error probability of a DS/SSMA system with a noncoherent M-ary orthogonal modulation,' in Proc. IEEE Veh. Technol. Conf., Denver, CO, May 1992, pp. 482-485.
[9] L. M. A. Jalloul and J. M. Holtzman, ``Performance Analysis of DS/CDMA with Noncoherent M-ary Orthogonal Modulation in Multipath Fading Channels,' IEEE J. Select. Areas Commun., vol. 12, no. 5, pp. 862-869, June 1994.
[10] V. Aalo, O. Ugweje, and R. sudhakar, ``Performance Analysis of a DS/CDMA System with Noncoherent M-ary Orthogonal Modulation in Nakagami Fading,' IEEE Trans. Veh. Technol., vol. 47, no. 1, pp. 20-29, Feb. 1998.
[11] M. B. Pursley, ``Performance evaluation for phase-coded spread-spectrum multiple-access communication-Part I: System analysis,' IEEE Trans. Commun., vol. COM-25, no. 8, pp. 795-799, Aug. 1977.
[12] J. G. Poakis, Digital Communications, 4th~ed. New York: McGraw-Hill, 2001.
[13] D. J. Torrieri, ``Performance of direct-sequence systems with long pseudonoise sequences,' IEEE J. Select. Areas Commun., vol. 10, pp. 770-781, May 1992.
[14] I. S. Gradshteyn, I. M. Ryzhik, and A. Jeffrey, Tables of Integrals, Series, and Products, 5th~ed. New York: Academic, 1994.
[15] P. M. Hahn, ``Theoretical diversity in multiple frequency shift keying,' IRE Trans. Commun., vol. CS-10, pp. 174-184, June 1962.
[16] G. L. Turin et al., ``A statistical model for urban multipath propagation,' IEEE Trans. Veh. Technol. vol. 21, pp. 1-8, Feb. 1972.
[17] T. S. Rappaport, S.Y. Seidel, and K. Takamizawa, ``Statistical channel impulse response models for factory and open plan building radio communication system design,' IEEE Trans. Commun., vol. 39, pp. 794-807, May 1991.
[18] G. K. Karagiannidis, D. A. Zogas, and S. A. Kotsopoulos, ``An efficient approach to multivariate Nakagami-m Distribution using Green's matrix approximation,' IEEE Trans. Wireless Commun., vol. 2, pp. 883-889, Sep. 2003.
[19] J. Gurland, ``Distribution of the maximum of the arithmetic mean of correlated random variables,' Annals of Math. Statistics, vol. 26, pp. 294-300, June 1955.
[20] H. Exton, Handbook of Hypergeometric Integrals : Theory, Applications, Tables, Computer Programs, Sussex, England: Ellis Horwood, 1978.
[21] S. Kotz and J. W. Adams, ``Distribution of sum of identically distributed exponentially correlated gamma-variables,' Annals of Math. Statistics, vol. 35, pp. 277-283, Mar. 1964.
[22] T. Wu and S. Tzeng, ``Sum-of-sinusoids-based simulator for Nakagami-m fading channels,' in Proc. IEEE Veh. Technol. Conf., Orlando, FL, Oct. 2003, vol. 1, pp. 158-162.
[23] T. Wu and L.-J. Chen, ``Performance of Multicode DS-CDMA Systems for Reverse Links over Nakagami-m fading channels,' in Proc. IEEE Veh. Technol. Conf., Los Angeles, CA, Sep. 2004.
[24] A. J. Viterbi, ``Very Low Convolution Codes for Maximum Theoretical Performance of Spread-Spectrum Multiple-Access Channels,' IEEE J. Select. Areas Commun., vol. 8, no. 4, pp. 641-649, May 1990.
[25] P. Dent, B. Gudmundson, and M. Ewerbring, ``CDMA-IC: A Novel Code Division Multiple Access Scheme Based on Interference Cancellation,' in Proc. PIMRC 92, Boston, MA, Oct. 1992, pp. 98-102.
[26] P. Patel and J. Holtzman, ``Analysis of a Simple Successive Interference Cancellation Scheme in a DS/CDMA System,' IEEE J. Select. Areas Commun., vol. 12, no. 5, pp. 796-807, June 1994.
[27] P. Patel and J. Holtzman, ``Performance Comparison of a DS/CDMA System Using Successive Interference Cancellation (IC) Scheme and a Parallel IC Scheme under Fading,' in Proc. IEEE Int. Conf. on Commun., New Orleans, LA, May 1994, pp. 510-514.
[28] W. C. Lindsey, ``Error probabilities for Rician fading multichannel reception of binary and N-ary signals,' IEEE Trans. Inform. Theory, vol. IT-10, pp. 339-350, Oct. 1964.
[29] Y. S. Song, H. M. Kwon, and B. J. Min, `` Computationally Efficient Smart Antennas for CDMA Wireless Communications,' IEEE Trans. Veh. Technol., vol. 50, no. 6, pp. 1613-1628, Nov. 2001.
[30] T. Eng and L. B. Milstein, ``Coherent DS-CDMA Performance in Nakagami Multipath Fading,' IEEE Trans. Commun., vol. 43, no.2/3/4, pp.1134-1143, Feb./March/April 1995.
[31] A. J. Viterbi, ``Error Bounds for Convolutional Codes and An Asymptotically Optimum Decoding Algorithm,' IEEE Trans. Inform. Theory, vol. 13, pp. 260-269, April 1967.
[32] A. J. Viterbi, ``Convolutional Codes and Their Performance in Communication Systems,' IEEE Trans. Commun., vol. 19, pp. 751-772, Oct. 1971.
[33] G. D. Forney, Jr., ``Maximum Likelihood Sequence Estimation of Digital Sequence in The Presence of Intersymbol Interference,' IEEE Trans. Inform. Theory, vol. 18, pp.363-378, May 1972.
[34] F. L. Vermuelen and M. E. Hellman, ``Reduced-State Viterbi Decoding for Channels with Intersymbol Interference,' in Proc. IEEE Int. Conf. on Commun., Minneapolis, MN, pp. 37B.1-37B.4, June 1974.
[35] G. J. Foschini, ``A Reduced-State Variant of Maximum-Likelihood Sequence Detection Attaining Optimum Performance for High Signal-to-Noise Ratio Performance,' IEEE Trans. Inform. Theory, vol. 24, pp. 605-609, Sep. 1977.
[36] V. M. Eyuboglu and S. U. Qureshi, ``Reduced-State Sequence Estimation with Set Partitioning and Decision Feedback,' IEEE Trans. Commun., vol. 36, pp. 13-20, Jan. 1988.
[37] A. Duel-Hallen, Detection for Channels with Intersymbol Interference, Ph. D. thesis, Cornell University, Ithica, NY, 1987.
[38] A. Duel-Hallen and C. Heegard, ``Delayed Decision Feedback Sequence Estimation,' IEEE Trans. Commun., vol. 37, pp. 428-436, May 1989.
[39] P. Chevillat and E. Eleftheriou, ``Decoding of Trellis-Encoded Signal in the Presence of Intersymbol Interference and Noise,'IEEE Trans. Commun., vol. 37, pp. 669-676, July 1989.
[40] A. P. Clark and R. Harun, ``Assessment of Kalman-filter channel estimator for an HF radio link,' IEE Proc., vol.133, pp.513-521, Oct. 1986.
[41] S. Haykin, ed., Adaptive Filter Theory, Englewood Cliff, NJ: Prentice-Hall, 1986.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top