跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 03:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳瑋仁
研究生(外文):Wei-jen Wu
論文名稱:靜壓頸軸承特性分析與最佳化
論文名稱(外文):Characteristics Analysis and Optimization of Hydrostatic Journal Bearings
指導教授:張永鵬張永鵬引用關係康淵康淵引用關係
指導教授(外文):Yeon-Pun ChangYeon-Pun Chang
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:91
中文關鍵詞:軸向節流面寬度比遺傳基因演算法靜壓頸軸承最小耗能最大剛度毛細管節流器周向節流面寬度比
外文關鍵詞:minimum loss.axial land-width ratiosgenetic algorithmcapillary compensationmaximum stiffnesshydrostatic journal bearingscircumferential land-width ratios
相關次數:
  • 被引用被引用:1
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:3
本文探討毛細管節流器之靜壓頸軸承特性,並以遺傳基因演算法探討最大剛度與最小耗能為目標函數之最佳化設計。
靜壓頸軸承之性能計算,基於軸承間隙內之油膜壓力假設為線性分佈,建立其外部油壓系統經毛細管節流器流入軸承之流量與各油區間的流入及流出量之守恆方程式,聯立求解得到各油腔之壓力,進而以面積分求解軸承之承載力、剛度與耗能等靜態特性。
本文探討軸承之油腔數目、節流器參數、軸向節流面寬度比、周向節流面寬度比及偏心率等參數,對於軸承之承載力、剛度、及耗能之影響,並以此分析結果為基礎在指定的供油壓力、軸承直徑、軸承長徑比、節流器形式、軸承間隙比與轉速等條件下,採用遺傳基因演算法尋求軸向節流面寬度比、周向節流面寬度比與節流器參數等三個設計參數的最佳值,藉以得到對應已知承載力之最大剛度與最小耗能。
This thesis studies the characteristics of hydrostatic journal bearings with capillary compensation. Based on the simulation results, the optimal design for bearing is carried out by using the genetic algorithm for the maximum stiffness and minimum loss. The general equations for film pressure can be derived according to the hypotheses of flow conservation along the circumferential and axial lands of bearings with infeed flow from restrictor. Furthermore, the characteristics are obtained by solving these coupled equations.
The results of the simulation including load capacity, bearing stiffness and power loss with the various numbers of recesses, restriction parameters, eccentricity ratios and the circumferential and axial land-width ratios. For restriction parameters, circumferential and axial land-width ratios optimal design are determined by using genetic algorithm under the design parameters of supplied pressure, bearing diameter, bearing aspect ratio, relative bearing clearance and rotating speed of journal. The optimal parameters corresponding to the required load capacity are obtained for the maximum bearing stiffness and minimum power loss.
目錄
中文摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VIII
符號索引 X
第一章 導論 1
1-1研究背景 1
1-2文獻回顧 3
1-3研究內容 9
第二章 理論分析 11
2-1軸承剛度計算方法 11
2-2軸承耗能方程式 20
第三章 軸承最佳化 22
3-1軸承剛度最佳化 22
3-2軸承耗能最佳化 23
第四章 結果與討論 27
4-1不同數值方法求解之結果比較 27
4-2一般計算分析 28
4-2.1四油腔之靜壓頸軸承分析 28
4-2.2不同腔數之靜壓頸軸承分析 32
4-3最佳化結果 44
4-3.1最佳化結果驗證 44
4-3.2軸承剛度最佳化 46
4-3.3軸承耗能最佳化 46
第五章 結論 54
參考文獻 55
Appendix A 油區之流量平衡方程式 59
Appendix B 潤滑油黏度計算 62
Appendix C 油區承載力計算公式 63
Appendix D 油區承載力傳統計算公式 75
表目錄
表3-1軸向節流面寬度比編碼對應表 26
表3-2周向節流面寬度比編碼對應表 26
表3-3節流參數編碼對應表 26
表4-1使用不同迭代方式所得承載力 27
表4-2使用不同迭代方式所得姿態角 28
表4-3使用不同迭代方式之迭代次數 28
表4-4不同設計參數、不同偏心率之承載能力W(4腔) 30
表4-5不同設計參數、不同偏心率之剛度S(4腔) 30
表4-6不同設計參數、不同偏心率之耗能 (4腔) 30
表4-7在 =0.2、 =0.2和 =10,不同油腔位置角之承載力比較 33
表4-8在 =0.2、 =0.2和 =10,不同油腔位置角之剛度比較 33
表4-9在 =0.05、 =0.4和 =10,不同油腔位置角之承載力比較 34
表4-10在 =0.05、 =0.4和 =10,不同油腔位置角之剛度比較 34
表4-11在 =0.2、 =0.2和 =10,不同油腔數之承載力W(多腔) 35
表4-12在 =0.2、 =0.2和 =10,不同油腔數剛度S(多腔) 35
表4-13在 =0.2、 =0.2和 =10,不同油腔數之耗能 (多腔) 35
表4-14在 =0.2、 =0.4和 =10,不同油腔數之承載力W(多腔) 37
表4-15在 =0.2、 =0.4和 =10,不同油腔數剛度S(多腔) 37
表4-16在 =0.2、 =0.4和 =10,不同油腔數之耗能 (多腔) 37
表4-17在 =0.05、 =0.4和 =10,不同油腔數之承載力W(多腔) 39
表4-18在 =0.05、 =0.4和 =10,不同油腔數剛度S(多腔) 39
表4-19在 =0.05、 =0.4和 =10,不同油腔數之耗能 (多腔) 39
表4-20在 =0.05、 =0.4和 =5,不同油腔數之承載力W(多腔) 41
表4-21在 =0.05、 =0.4和 =5,不同油腔數剛度S(多腔) 41
表4-22在 =0.05、 =0.4和 =5,不同油腔數之耗能 (多腔) 39
表4-23 3油腔之剛度最佳化結果 47
表4-24 4油腔之剛度最佳化結果 47
表4-25 5油腔之剛度最佳化結果 48
表4-26 6油腔之剛度最佳化結果 48
表4-27 8油腔之剛度最佳化結果 49
表4-28 12油腔之剛度最佳化結果 49
表4-29 3油腔之耗能最佳化結果 50
表4-30 4油腔之耗能最佳化結果 51
表4-31 5油腔之耗能最佳化結果 51
表4-32 6油腔之耗能最佳化結果 52
表4-29 8油腔之耗能最佳化結果 52
表4-33 12油腔之耗能最佳化結果 53

圖目錄
圖2-1 偏心及位置角 與 13
圖2-2 第k油區流量平衡 14
圖2-3 油區承載力及其作用位置 16
圖2-4 靜壓軸承性能參數計算流程(Newton-Raphson法) 17
圖2-5 靜壓軸承性能參數計算流程 18
圖3-1 遺傳基因演算法流程圖(目標函數為剛度) 25
圖4-1 不同設計參數下之承載力( )、剛度( )與耗能( ) 31
圖4-2 3腔靜壓軸承之油腔位置示意圖 32
圖4-3 5腔靜壓軸承之油腔位置示意圖 33
圖4-4 =0.2、 =0.2和 =10,不同油腔數之承載力、剛度與耗能 36
圖4-5 =0.2、 =0.4和 =10,不同油腔數之承載力、剛度與耗能 38
圖4-6 =0.05、 =0.4和 =10,不同油腔數之承載力、剛度與耗能 40
圖4-7 =0.05、 =0.4和 =5,不同油腔數之承載力、剛度與耗能 42
圖4-8 改變 之剛度變化 45
圖4-9 改變 之剛度變化 45
圖4-10 改變 之剛度變化 46
圖4-11 不同油腔數、不同偏心率下所對應的最大剛度 50
圖4-12 不同油腔數、不同偏心率下所對應的最小耗能 53
圖C-1 第k油區的壓力分佈 60
圖C-2 兩相鄰油腔之間的壓力分佈 64
圖C-3 第k油區壓力所組成的體積 70
圖C-4 Plane 1、Plane 2與Plane 3投影在xz平面上的面積 72
圖C-5 Plane 4、Plane 5與Plane 6投影在 平面上的面積 73
圖D-1傳統假設之壓力分佈 76
參考文獻
1.Raimondi AA, Boyd J, An analysis of orifice-& capillary-compensated hydrostatic journal bearings. Lubr Eng 1957;13(1):29-37.
2. Davies PB, A general analysis of multi-recess hydrostatic journal bearings, Proceedings of Institution of Mechanic. Engineerings 1969;184 Part 1 (43):827-836.
3.O’Donoghue JP, Rowe WB, Hydrostatic bearing design. Tribology International 1969; 2(1):25-71.
4.O’Donoghue JP, Rowe WB, Hooke CJ, Design of hydrostatic bearings using an operating parameter. Wear 1969;14(5):355-362.
5.Rowe WB, O’Donoghue JP, Cameron A, Optimization of externally pressurized bearings for minimum power and low temperature rise. Tribology 1970; 3(3):153-157.
6.Stout KJ, Rowe WB, Externally pressurized bearings – design for manufacture Part 3: design of liquid externally pressurized bearings for manufacture including tolerancing procedures. Tribology International 1974;7(5):195-212.
7.Ghosh B, An exact analysis of a hydrostatic journal Bearing with a large circumferential sill. Wear 1972;21(2):367-375.
8.Ghosh B, Load and flow characteristics of capillary-compensated hydrostatic journal bearing. Wear 1973;23(3):377-386.
9.Singh DV, Sinhasan R, Ghai RC, Finite element analysis of orifice compensated hydrostatic journal bearings. Tribology International 1976; 9(6):281-284.
10.Ghosh MK, Majumdar BC, Design of multirecess hydrostatic oil journal bearings. Tribology International 1980;13(2):73-78.
11.Malanoski SB, Loeb AM, The effect of the method compensation on hydrostatic bearing stiffness. Transaction of the ASME, Journal of Basic Engineering 1961;83(2):179-187.
12.Rowe WB, Dynamic and static properties of recessed hydrostatic journal bearings by small displacement analysis. Transaction of the ASME, Journal of Lubrication Technology 1980;102(1):71-79.
13.Rowe WB, Koshal D, Stout KJ, Ivestigation of recessed hydrostatic and slot-entry journal bearings for hybrid hydrodynamic and hydrostatic operation. Wear 1977; 43(1):55-71.
14.Rowe WB, Koshal D, A new basis for the optimization of hybrid journal bearings. Wear 1980;64(1):115-131.
15.Rowe WB, Hydrostatic and Hybrid Bearing Design. Butterworths, London, 1983.
16.Leonard R, Rowe WB, Dynamic force coefficients and the mechanism of instability in the hydrostatic journal bearings. Wear 1973;23(3):277-282.
17.Rohde SM, Ezzat HA, On the dynamic behavior of hybrid journal bearings. journal of lubrication technology, Transactions of the ASME 1976;98(1):90-94.
18.Ghosh MK, Dynamic characteristics of multirecess externally pressurized oil journal bearing. journal of lubrication technology, Transactions of the ASME 1978;100(4):467-471.
19.Ghosh MK, Majumdar BC, Rao JS, Steady-state and dynamic behavior of multi-recess hybrid oil journal bearings. Journal of Mechanical Engineering Science 1979;21(5):345-351.
20.Rowe WB, Chong FS, Computation of dynamic force coefficients for hybrid (hydrostatic/hydrodynamic) journal bearings by the finite disturbance and perturbation Techniques. Tribology International 1986;19(5):260-271.
21.Ghosh MK, Viswanath NS, Recess volume fluid compressibility effect on the dynamic characteristics of multirecess hydrostatic journal bearings with journal rotation. Journal of Tribology, Transactions of the ASME 1987;109(3): 417-426.
22.Ghosh MK, Viswanath NS, Frequency dependent stiffness and damping coefficients of orifice compensated multi-recess hydrostatic journal bearings. International Journal of Machine Tools & Manufacturing 1987; 27(3):275-287.
23.Ghosh MK, Guha SK, Majumdar BC, Rotordynamic coefficients of multirecess hybrid journal bearings part I. Wear 1989; 129 (2):245-259.
24.Guha SK, Ghosh MK, Majumdar BC, Rotordynamic coefficients of multirecess hybrid journal bearings part II: fluid inertia effect. Wear 1989; 129(2):261-272.
25.Chen CC, Kang Y, Huang YN, Chu CH, Teng JT, The restrictive effects of capillary compensation on the stability of the jeffcott rotor-hybrid bearing system. Tribology International 2002; 35(12):849-855.
26.Chen CC, Kang Y, Huang CC, The influences of orifice restriction and journal eccentricity on the stability of the rigid rotor-hybrid bearing system. Tribology International 2004;37(3):227-234.
27.Dumbrava MA, Review of principles and methods applied to the optimum calculation and design of externally-pressurized bearings. Part 1: Low/moderate speed bearings. Tribology International 1985; 18(3):149-156.
28.Rowe WB, Cheng K, Ives D, Intelligent design system for recessed hydrostatic journal bearings, Wear 1992;159(1):95-105.
29.Cheng K, Rowe WB, A selection strategy for the design of externally pressurized journal bearings, Tribology International 1995; 28(7):465-474.
30.Holland JH, Adaptation in Nature and Artificial Systems. MIT Press(1975).
31.De Jong KA, An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph. D Dissertation, University of Michigan, No. 76-9381(1975).
32.Goldberg DE, Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley(1989).
33.Davis LD, Handbook of Genetic Algorithms. Van Nostrand Reinhold(1991).
34.Wu SJ, Chow PT,Genetic algorithm for nonlinear mixed discrete-integer optimization problems via meta-genetic parameter optimization. Engineering Optimization 1995;24(2):137-159.
35.Renner G, Ekart A, Genetic algorithms in computer aided design. Computer-Aided Design 2003;35(8):709-726.
36.Bassani R, Piccigallo B, Hydrostatic Lubrication. Elsevier Science Publishers, London, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top