跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 16:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張弘
研究生(外文):Hung Chang
論文名稱:高速移動質量對樑的振動與疲勞裂紋成長之影響
論文名稱(外文):Effect of High-Speed Moving Mass on the Vibration and Fatigue Crack Growth of Beams
指導教授:施延欣施延欣引用關係
指導教授(外文):Yan-Shin Shih
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:109
中文關鍵詞:高速移動質量疲勞裂紋
外文關鍵詞:fatiguecrackhigh speed moving mass
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本文中,考慮在方形截面樑的小變形量下,樑的振動過程受到一具有脈衝運動型態的移動質量影響。利用漢米爾頓原理(Hamilton’s principle)來推導其運動方程式與邊界條件,開放式裂紋的勁度則使用破壞力學的理論來推導,無裂紋狀態時的勁度與Mathieu方程式是運用Galerkin’s的方法,使用開放式裂紋與呼吸式裂紋的勁度來替代無裂紋時的勁度。關於振幅與時間關係的計算,是使用四階的Runge-Kutta方法。在疲勞裂紋成長的部分,關於疲勞裂紋成長與負載次數的關係,則是使用Modified Forman方程式來做計算。再利用呼吸式裂紋的理論來分析振動對疲勞壽命的影響以及振動與疲勞之間的互相影響。在選擇裂紋模型時,使用呼吸式裂紋來描述頻率響應的現象與疲勞裂紋成長是較接近現實的。由於現有文獻以及分析軟體對耦合分析的缺乏,因此對具高速移動質量對梁樑的振動與疲勞裂紋成長,提供完整的分析步驟是本研究主要的貢獻
In this study, the small deformations of rectangular cross section beam are considered. Including the pulse motion, the high speed moving mass is considered during procedure of andysis vibration. The equation of motion and boundary conditions are derived by Hamilton’s principle. The stiffness with opening crack is derived by fracture mechanics. Mathieu equation and the stiffness without crack are derived by Galerkin’s method. For models of opening and breathing cracks, the stiffnesses are replace of by the definitions. The 4th order Runge – Kutta method is used to determine the relation of amplitude and time. Modified Forman equation is used to calculate the relation of fatigue crack growth and loading cycles. Since the stiffness depends on the crack length, the corrected of stiffness is determined cycle by cycle. The effect of vibration on fatigue life and the interaction between vibration and fatigue are analyzed by breathing crack theory. That the breathing crack model is applied to describe the phenomenon of frequency response and fatigue crack growth is more realistic. The Coriolis and Centrifugal force effect the vibration and fatigue crack growth and this kinds of literature and the commercial software of fatigue is lacking, providing a procedure of coupling analysis for the cracked beam is the major accomplishment.
CONTENTS
摘 要…………………………………………………………………..…i
ABSTRACT……………………………………………………………...ii
誌 謝……………………………………………………………………iii
第一章 前言…………………………………………………………….iv
第二章 運動方程式…………………………………………………….vi
第三章 裂紋模型……………………………………………………….xi
第四章 分析程序……………………………………………………...xiii
第五章 疲勞裂紋成長…………………………………………...…..xviii
第六章 結果與討論……………………………………………….....xxiv
第七章 結論…………………………………………...…………….xxvii
CONTENTS…………………………………………………………..xxix
LIST OF TABLES…………………………………………….………xxxi
LIST OF FIGURES…………………………………………………..xxxii
NOMENCLATURE……………………………………………..…xxxviii

CHAPTER 1. INTRODUCTION………………………………………..1

CHAPTER 2. EQUATION OF MOTION……………………………….5
2.1 PROBLEM DESCRIPTION AND ASSUMPTIONS………….....5
2.2 HAMILTON’S PRINCIPLE……………………………………...6

CHAPTER 3. THE CRACK MODEL………………………………….10

CHAPTER 4. ANALYTICAL PROCEDURE………………………….12
4.1 DETERMINING THE ADDITIONAL COMPLIANCE OF RECTANGULAR CROSS SECTION…..……………………..12
4.2 DETERMINING THE OPENING, BREATHING, AND NO CRACK STIFFNESS…………………………………………..15

CHAPTER 5. FATIGUE CRACK GROWTH………………………….20
5.1 MODIFIED FORMAN EQUATION………………..…………..20
5.2 CRACK GROWTH ANALYSIS………………………………..22
5.3 FATIGUE FAILURE CRITERIA………………………………..24
5.4 FATIGUE CRACK GROWTH ANALYSIS STEPS…………….25

CHAPTER 6. RESULTS AND DISCUSSION…………………………26
6.1 TRANSIENT VIBRATION WITHOUT CRACK GROWTH…..26
6.2 CRACK DEPTH RATIO ………………………..…………....27
6.3 CORIOLS AND CENTRIFUGAL FORCES AFFECTED BY THE MOVING MASS………………………………………………...27
6.4 COUPLING ANALYSIS OF VIBRATION AND FATIGUE GROWTH…………………………………………………….….27

CHAPTER 7. CONCLUSION………………………………………….30

REFERENCES………………………………………………………….32

TABLES………………………………………………………………...35

FIGURES……………………………………………………………….36

簡 歷…………………………………………………………………....67
[1] L. Fryba 1972 Vibrations of Solids and Structures under Moving Loads Groningen; Nordhoff International Publication Co.
[2] A. K. Pandey, M. Biswas and M. Samman, Damage detection from change in curvature model shape, Journal of Sound and Vibration, Vol.145, pp.321-332, 1991.
[3] T. C. Tsai and Y. Z. Wang, Vibration analysis and diagnosis of a cracked shaft, Journal of Sound and Vibration, Vol.192, pp.607-620, 1996.
[4] B. P. Nandwana and S. K. Maiti, Dection of the location and size of a crack in stepped cantilever beams bases on measurements of natural frequencies, Journal of Sound and Vibration, Vol.203, pp.435-446, 1997.
[5] C. A. Papadopoulos and A. D. Dimarogonas, Coupled longitudinal vibrations of a cracked shaft, Journal of Vibration, Acoustics, Stress and Reliability in Design, Vol.110, pp.1-8, 1988.
[6] C. A. Papadopoulos and A. D. Dimarogonas, Coupling of bending and torsional vibration of a cracked Timoshenko shaft, Ingenieur Archiv, Vol.57, pp.257-266, 1987.
[7] T. G. Chondros, A. D. Dimarogonas and J.Yao, A consistent cracked bar vibration theory, Journal of Sound and Vibration, Vol.200, pp.303-313, 1997.
[8] T. G. Chondros, A. D. Dimarogonas and J.Yao, Longitudinal vibration of a continuous cracked bar, Engineering Fracture Mechanics, Vol.61, pp.593-606,1998.
[9] T. G. Chondros, A. D. Dimarogonas and J.Yao, A continuous cracked beam vibration theory, Journal of Sound and Vibration, Vol.215 (1), pp.17-34, 1998.
[10] T. G. Chondros, A. D. Dimarogonas and J.Yao, Longitudinal vibration of a bar with a breathing crack, Engineering Fracture Mechanics, Vol.61, pp.503-518, 1998.
[11] T. G. Chondros, A. D. Dimarogonas and J.Yao, Vibration of a beam with a breathing crack, Journal of Sound and Vibration, Vol.239 (1), pp.57-67, 2001.
[12] O. N. L. Abraham and J.A. Brandon, The modeling of the opening and closure of a crack, Journal of Vibration and Acoustics, Vol.117, pp.370-377, 1995.
[13] S. M. Cheng, X. J. Wu and W. Wallace, Vibration response of a beam with a breathing crack, Journal of Sound and Vibration, Vol.225 (1), pp.201-208, 1999.
[14] P. Paris and F. Erdogon, A critical analysis of crack propagation laws, Journal of Basic Engineering, Vol.10, pp.528-534, 1963.
[15] R. G. Forman, V. E. Kearney and R. M. Engle, Journal of Basic Engineering, Vol.9, pp.459-464, 1968.
[16] R. G. Forman, V. Shivakumar and J.C. Newman, Fatigue crack growth computer program (NASGRO), Version 2.0, Engineering Mechanics Technology, San Jose, CA, 1995.
[17] Y. S. Shih and J. J. Chen, Analysis of fatigue crack growth on a cracked shaft, International Journal of Fatigue, Vol.19, pp.477-485, 1997.
[18] G. Michaltsos, D. Sophianopoulos and A. N. Kounadis, The effect of a moving mass and other parameters on the dynamic response of a simply suppored beam. Journal of Sound and Vibration 191(3), 357-362, 1996.
[19] M. A. Foda and Z. Abduljabbar, A dynamic green function formulation for the response of a beam structure to a moving mass. Journal of Sound and Vibration 210(3), 295-306, 1998.
[20] U.Lee, Separation between the flexible structure and the moving mass sliding on it. Journal of Sound and Vibration 209(5), 867-877 , 1998
[21] A. D. Dimarogonas, S.A. Paipetis, Analytical methods in rotor dynamics, London: Applied Science Publishers, 1983.
[22] H. Tada, C. Paris and G. R. Irwin, The stress analysis of crack handbook, St. Louis, Missouri: Del Research Corp, 1978.
[23] G. Lindfield and J. Penny, Numerical methods using MATLAB, The Math Work, Inc.
[24] Y. S. Shih and G. Y. Wu, Effect of vibration on fatigue crack growth of an edge crack for a rectangular plate, International Journal of Fatigue 24 (2002) 557-566.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top