跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/04 19:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林盈秀
研究生(外文):Ying-shiou Lin
論文名稱:允許延後付款及現金折扣條件下零售商之訂購策略
論文名稱(外文):Retailer’s economic ordering policy under permissible delay in payment and cash discount
指導教授:黃勇富黃勇富引用關係
指導教授(外文):Yung-fu Huang
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:企業管理系碩士班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
畢業學年度:92
語文別:中文
論文頁數:73
中文關鍵詞:延後付款補充率現金折扣
外文關鍵詞:cash discountreplenishment ratedelay in payment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:2
面對高度競爭的環境,企業為了永續經營,必須一方面增加收入,而另一方面有效地節省成本,以提高其競爭力。其中,存貨為企業重要資產之一,管理人員所面臨的不僅是要減少庫存以降低成本或準備存貨以滿足顧客所有的需求,更要針對實際交易情況來控制適當的存量。
傳統經濟訂購量模型(Economic Order Quantity, EOQ)隱含著零售商在供應商將商品送達時,必須將貨款交付給供應商,實際上,供應商會給予零售商一段固定的付款期限,即信用交易期限。因此,零售商可降低存貨資金的積壓,且供應商可以此來刺激零售商的需求。
本研究以允許延後付款為主軸,建立兩個存貨補充模型,模型一將供應商非瞬間將商品補充完畢及給予零售商現金折扣兩個條件納入考量;模型二將考慮補充率有限且產品售價高於產品成本之條件,其年度總成本是根據下列兩種情況探討﹕一是零售商於現金折扣期限付款,另一種為零售商在信用交易期限付款,並以導數及代數兩方法分析,以此提供管理者最佳補充策略之決策準則。
In order to operating permanently under highly competitive environment, enterprises have to increase revenue and economize cost effectively. Inventory is an important asset, managers therefore face not only decrease inventory to lower cost or prepare goods to satisfy the customers’ needs, but also aim at real transaction to control inventory.
Traditional EOQ model implies that retailers must be paid for the items as soon as the items are received. However, in fact the supplier will offer the retailer a delay period. That is trade credit. Not only the retailer can lower the backlog cost, but also the supplier can encourage the buyers to order more.
This paper establishes two inventory replenishment models under permissible delay in payment. Model one considers the supplier’s replenishment rate is finite and offer cash discount to retailers. Model two will consider the supplier’s replenishment rate is finite and the item’s selling price is higher than its cost. The total relevant cost is according to two cases: one is that the retailer pay the money at the end of cash discount period, the other one is that the retailer pay the money at the end of trade credit period. Then, two models will be analyzed by derivation and algebra. With those procedures, we obtain some decision rules of optimal replenishment strategy.
目 錄

第壹章 緒論
第一節 研究背景與動機……………….……………........…..1
第二節 研究目的……………….……………………............3
第三節 研究範圍與限制………………………………………3
第四節 論文架構與研究流程………………………………...4

第貳章 文獻探討
第一節 存貨基本定義………….……………………………...……7
第二節 信用交易、現金折扣及補充率有線之探討………………...8

第參章 補充率有限及給予現金折扣條件下之最佳存貨補充策略
第一節 模型建構…………………………...………………..13
第二節 最佳訂購週期( )決定…………………………………....22
第三節 數值範例…………………………………………….......30
第四節 本章小結………………………………………….....33

第肆章 每單位產品售價不低於購入成本條件下之最佳存貨補充策略
第一節 模型建構………………………………...…………..34
第二節 最佳訂購週期( )決定…………………………………....41
第三節 數值範例……………………………………………….....49
第四節 本章小結………………………………………….....51


第伍章 以代數方法探討上述二模型
第一節 模型一之代數法求解程序…………………..…………52
第一節 模型二之代數法求解程序………….………………….60
第三節 本章小結……………………………………………...67

第陸章 結論與未來研究方向
第一節 結論…………………………………………………………68
第二節 未來研究方向………………………………………………70

參考文獻……………………………………………….…………….71















表目錄

表2.1 相關文獻彙整表…………………..……................11
表3.1 當 改變時最適之訂購週期………………..…...…….….30
表3.2 當 改變時最適之訂購週期…………………………………31
表3.3 當 改變時最適之訂購週期…………………………………31
表3.4 當 改變時最適之訂購週期………………………………….32
表3.5 當 改變時最適之訂購週期……………………………...…33
表4.1 當 改變時最適之訂購週期…...............…….…..49
表4.2 當 改變時最適之訂購週期……............…….…...49
表4.3 當 改變時最適之訂購週期..………….….…….….…….50












圖目錄

圖1.1 論文研究流程圖………………..……...............…..6
圖3.1 在 情況下之存貨水準變動圖...............…….…...16
圖3.2 在 情況下之存貨水準變動圖………..…..….…........16
圖3.3 在 情況下賺取之機會成本圖……………………………...16
圖3.4 在 情況下之存貨水準變動圖.………………............17
圖3.5 在 情況下之存貨水準變動圖…………………...........17
圖3.6 在 情況下賺取之機會成本圖……………………………...17
參考文獻
1. Aggarwal, S.P. and Jaggi C.K., “Ordering policies of deteriorating items under permissible delay in payments,” Journal of the Operational Research Society 46 (1995), 458-662.
2. Cárdenas-Barrón L.E., “The economic production quantity (EPQ) with shortage derived algebraically,” International Journal of Production Economics 70 (2001), 289-292
3. Chang, C.T., “ Extended economic order quantity model under cash discount and payment delay,” International Journal of Information and Management Sciences 13 (2002), 57-69
4. Chang, C.T. and Wu S.J., “A note on ‘Optimal payment time under permissible delay in payment for products with deterioration’,” Production Planning & Control 14 (2003), 478-482
5. Chung, K.J., “A theorem on the determination of economic order quantity under conditions of permissible delay in payments,” Computers and Operations Research 25 (1998), 49-52.
6. Chung, K.J. and Huang Y.F., ”The optimal cycle time for EPQ inventory model under permissible delay in payments,” International Journal of Production Economics 84 (2003a), 307-318
7. Chung, K.J. and Huang Y.F., “Economic ordering policies for items under permissible delay in payments,” Journal of Information & Optimization Sciences 24 (2003b), 329-344
8. Chung, K.J. and Liao J.J., “Lot-size decisions under trade credit depending on the ordering quantity,” Computers & Operations Research 31 (2004) 909-928
9. Chu, Peter, Chung K.J. and Lan S.P., “Economic order quantity of deteriorating items under permissible delay in payments,” Computers Operations Research 25 (1998), 817-824
10. Goyal, S.K., “Economic order quantity under conditions of permissible delay in payments,” Journal of the Operational Research Society 36 (1985), 335-338.
11. Haley, C.W. and Higgins, R.C., “Inventory policy and trade credit financing,” Management Science 20 (1973), 464-471
12. Huang, Y.F. and Chung K.J., “Optimal replenishment and payment policies in the EOQ model under cash discount and trade credit,” Asia-Pacific Journal of Operational Research 20 (2003), 177-190
13. Jamal, A.M.M., Sarker B.R. and Wang S., “ An ordering policy for deteriorating items with allowable shortage and permissible delay in payment,” Journal of the Operational Research Society 48 (1997), 826-833.
14. Ouyang, L.Y., Chen M.S. and Chuang K.W., “Economic order Quantity model under cash discount and payment delay,” International Journal of Information and Management Sciences 13 (2002), 1-10
15. Robert, W. Grubbström and Asli Erdem, “The EOQ with backlogging derived without derivatives,” International Journal of Production Economics 59 (1999), 529-530
16. Richard, B.C. and Nicholas, J.A., Operations Management for Competitive Advantage, 9th ed, The McGraw-Hill Companies, Inc
17. Sarker, B.R., Jamal A.M.M. and Wang S., “Optimal payment time under permissible delay in payment for products with deterioration,” Production Planning & Control 11(2000), 380-390
18. Shawky, A.I. and Abou-El-Ata M.O., “Constrained production lot-size model with trade credit policy: ‘a comparison geometric programming approach via Lagrange’,” Production Planning & Control 12(2001), 654-659
19. Silver, E. A., Pyke, D. F., and Peterson, R., Inventory management and production planning and scheduling, 3rd ed, John & Sons, (1998),150-155
20. Teng, J.T. “On the economic order quantity under conditions of permissible delay payments,” Journal of the Operational Research Society 53 (2002), 915-918
21. Wu, K.S. and Ouyang L.Y., “An integrated single-vendor single-buyer inventory system with shortage derived algebraically,” Production Planning & Control 14 (2003), 555-561
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top