跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾美蓮
研究生(外文):Mei-lien Chung
論文名稱:膽固醇薄膜分子模版複合膜之研究
論文名稱(外文):The Study on Cholesterol-Imprinted Thin Film Composite Membranes
指導教授:陳文正陳文正引用關係
指導教授(外文):Wen-janq Chen
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:應用化學系碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:191
中文關鍵詞:膽固醇高效能液相層析儀
外文關鍵詞:cholesterolMembraneMolecularly imprinted polymer
相關次數:
  • 被引用被引用:2
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
分子模版高分子(molecularly imprinted polymer, MIP)為單體與模版分子形成錯合物,並以高比例之交聯劑進行交聯聚合反應,合成具有高度吸附選擇性之聚合物,對模版分子或其結構相似的分子有良好之辨識能力。
本研究以膽固醇為模版分子,黃體酮及荳固醇為競爭分子,MAA為單體,DVB及EGDMA為交聯劑,1-hydroxycyclohexylphenyl ketone為光起始劑,以紫外光(254nm)光化學聚合反應的方式製備模版高分子顆粒及薄膜,並使用高效能液相層析儀(HPLC)測量膽固醇模版高分子對膽固醇的吸附量以及選擇率。
由顆粒狀分子模版高分子吸附實驗結果得知,(a)在單一溶質吸附液與混合溶質吸附液中,MIP對膽固醇及黃體酮之吸附量不同,對膽固醇的選擇性較高於黃體酮,尤其長時間的吸附作用下,膽固醇的選擇效應更加明顯,顯示顆粒狀MIP確實具有辨識膽固醇之模版位置,同時,MIP辨識性質深受流動相溶液影響,原因為吸附液中溶劑的極性能改變MIP的吸附效能,以甲醇/水(90/10)的比例為吸附液溶劑結果顯示分子模版高分子對膽固醇的吸附量不僅提高,且選擇性亦更明顯。
由薄膜型膽固醇模版高分子吸附結果發現,MIP薄膜與NIP薄膜可附著於鋁片(Al plate)及鍍鋁玻璃(Al-coated glass)表面,MIP在單一溶質吸附液與混合溶質吸附液中,對膽固醇與荳固醇的吸附量不同,NIP則顯現較小的吸附量,且兩者吸附量大約相同。在各種不同組成的聚合溶液中,以95 mole%,DVB為交聯劑之組成,合成製備之模版高分子薄膜對膽固醇具有較高的選擇性。
The technique to synthesize molecularly imprinted polymer(MIP)involves complexation of template molecule and functional monomer, followed by polymerization of this complex with crosslinker to form a highly crosslinking polymer, MIP exhibits specific recognition ability to template molecule due to the affinity between functional group and template molecule and it’s well-defined shape which allows the template molecule specifically to fit in.
The purpose of this study is to synthesize cholesterol-imprinted polymerization, UV(254nm) stimulated polymerization with methacrylic acid (MAA) as functional monomer, divinylbenzene (DVB) and Ethylene glycol dimethacrylate (EGDMA) as crosslinker and 1-hydroxycyclohexylphenyl ketone as initiator. The adsorption determined by analyzing the concentration change of solute in adsorption solution using HPLC.
For MIP particles, the results showed that cholesterol-imprinted polymer adsorbed different amount of cholesterol and progesterone when they were placed in the adsorption solution of single solute and in the adsorption solution of binary solute. Cholesterol was more selectivity adsorbed by MIP particle than progesterone. Especially for long-period of adsorption, selectivity characteristics for cholesterol was more significant. This results indicated that the synthesized MIP did possess template site which could recognize cholesterol molecule. In addition, the adsorption amount of cholesterol and selectivity factor for cholesterol were enhanced when the polarty of solvent in adsorption solution was increased.
For MIP composite membranes, it was found that both MIP membrane and NIP membrane were still retained on the surface of both Al plate and Al-coated glass after series of treatment including extraction, adsorption and re-extraction. Cholesterol-imprinted polymer membrane adsorbed more cholesterol than stigmasterol. NIP membrane adsorbed about the same amount of both cholesterol and stigmasterol. The amount of cholesterol and stigmasterol adsorbed by NIP membrane was smaller than that adsorbed by MIP membrane. The results suggested that MIP membrane did exhibit the ability to recognize cholesterol. With polymerization solution of 95 mole% DVB, the synthesized MIP membrane showed the better selective characteristics toward cholesterol.
中文摘要 ---------------------------------------------------------------------------------- I
英文摘要 -------------------------------------------------------------------------------- III
誌謝 -------------------------------------------------------------------------------------- V
目錄 ------------------------------------------------------------------------------------ VI
圖目錄---------------------------------------------------------------------------------- VIII
表目錄--------------------------------------------------------------------------------- XIX
第 一 章 緒論 -------------------------------------------------------------------------- 1
1.1前言------------------------------------------------------------------------------ 1
1.2分子模版技術(Molecular imprinting technique)------------------------ 2
1.3分子模版的應用--------------------------------------------------------------- 5
1.4薄膜技術工程應用於分子模版高分子的合成-------------------------- 12
1.5檢測膽固醇的方法----------------------------------------------------------- 13
1.6 MIPs技術於膽固醇分析的應用------------------------------------------- 18
1.7 研究動機---------------------------------------------------------------------- 19
第二章 原理----------------------------------------------------------------------------- 21
2.1 分子模版高分子的原理--------------------------------------------------- 21
2.1.1自組結合--------------------------------------------------------------- 24
2.1.2 單體聚合------------------------------------------------------------- 24
2.1.3 模版移除------------------------------------------------------------- 25
2.2 分子模版高分子的製備---------------------------------------------------- 25
2.3 目標物分子-膽固醇 (Cholesterol)------------------------------------- 30
2.3.1 膽固醇的特性與合成---------------------------------------------- 30
2.3.2 膽固醇的結構------------------------------------------------------- 34 2.3.3 膽固醇在人體內的運輸與代謝---------------------------------- 36
2.3.4 膽固醇與血管硬化及心臟病之關係---------------------------- 38
2.3.5 黃體酮(Progesterone)--------------------------------------------- 40
2.3.6 荳固醇(Stigmasterol)--------------------------------------------- 42
2.4功能性單體(Functional monomer)----------------------------------- 42
2.5 交聯劑(Crosslinker)-------------------------------------------------------- 48
2.6 聚合方式---------------------------------------------------------------------- 50
2.6.1 共價鍵鍵結方式---------------------------------------------------- 50
2.6.2 非共價鍵結合------------------------------------------------------- 52
2.6.2.1 酸鹼性官能基單體---------------------------------------- 52
2.6.2.2 金屬離子官能基單體------------------------------------- 55
2.6.2.3 金屬離子模版分子---------------------------------------- 55
2.6.2.4 無機化合物單體------------------------------------------- 57
2.6.2.5 微生物模版分子------------------------------------------- 61
2.7 聚合膽固醇模版高分子---------------------------------------------------- 63
第三章 實驗------------------------------------------------------------------- 68
3.1 實驗藥品與儀器------------------------------------------------------------- 68
3.1.1 實驗藥品------------------------------------------------------------- 68
3.1.2 實驗儀器------------------------------------------------------------- 70
3.2 顆粒狀分子模版高分子---------------------------------------------------- 71
3.2.1 分子模版高分子之製備------------------------------------------- 71
3.2.2 分子模版高分子中膽固醇之移除------------------------------- 75
3.2.3 分子模版高分子之吸附效能測試------------------------------- 76
3.2.3.1 膽固醇(Cholesterol)/ 黃體酮(Progesterone)
系統--------------------------------------------------------- 76
3.2.3.2 HPLC分析系統-------------------------------------------- 77
3.3 薄膜型分子模版高分子---------------------------------------------------- 77
3.3.1 以多孔性氧化鋁Anopore®為基材之分子模版高分子複
合膜-------------------------------------------------------------------77
3.3.1.1 分子模版高分子複合膜之製備------------------------- 77
3.3.1.2 Anopore®表面改質----------------------------------------- 78
3.3.1.3 分子模版高分子之脫附作用---------------------------- 78
3.3.1 .4 MIP/ Anopore®複合膜之特性分析--------------------- 81
3.3.1.4.1 氣體穿透儀分析------------------------------ 82
3.3.1.4.2 掃瞄式電子顯微鏡(SEM)分析------------ 86
3.3.2 以鋁片(Al plate)為基材之分子模版高分子複合膜----------- 86
3.3.2.1 分子模版高分子複合膜之製備------------------------- 86
3.3.2.1.1 DVB/MAA/Cholesterol聚合溶液-------- 86
3.3.2.1.2 EGDMA/MAA/Cholesterol聚合溶液---- 88
3.3.2.2 分子模版高分子薄膜中膽固醇之移除---------------- 89
3.3.2.3 分子模版高分子複合膜效能測試---------------------- 89
3.3.2.4 MIP/Al複合膜之特性分析----------------------------- 92
3.3.2.4.1 掃瞄式電子顯微鏡分析--------------------- 92
3.3.2.4.2 液相層析儀分析------------------------------ 93
3.3.3 以鍍鋁玻璃為基材之分子模版高分子複合膜---------------- 93
3.3.3.1 分子模版高分子複合膜之製備------------------------- 93
3.3.3.1.1 DVB/MAA/Cholesterol聚合溶液-------- 93
3.3.3.1.2 EGDMA/MAA/Cholesterol聚合溶液---- 93
3.3.3.2 MIP/鍍鋁玻璃複合膜中膽固醇之移除---------------- 95
3.3.3.3 分子模版高分子複合膜之吸附效能測試------------- 95
3.3.3.4 分子模版高分子複合膜特性分析---------------------- 95
3.3.3.4.1 掃瞄式電子顯微鏡分析--------------------- 95
3.3.3.4.2 液相層析儀分析------------------------------ 97
第四章 結果---------------------------------------------------------------------------- 98
4.1 顆粒狀分子模版高分子---------------------------------------------------- 98
4.1.1分子模版高分子中膽固醇之移除--------------------------------- 98
4.1.2 吸附效能測試------------------------------------------------------ 101
4.1.2.1 DVB/MAA/Cholesterol聚合溶液---------------------- 101
4.1.2.1.1膽固醇 / 黃體酮系統----------------------- 101
4.2 薄膜型分子模版高分子-------------------------------------------------- 119
4.2.1 以多孔性氧化鋁Anopore®為基材之分子模版高分子複
合膜----------------------------------------------------------------- 119
4.2.1.1膜厚與紫外光光照時間及氧氣穿透係數的關係-- 119
4.2.1.2分子模版高分子薄膜中膽固醇之移除-------------- 122
4.2.2 合成膽固醇分子模版高分子薄膜於改質之Anopore®
表面----------------------------------------------------------------- 122
4.2.2.1以3-(Trimethoxysilyl)propyl ester
(CH2=CHCOO(CH2)3Si(OCH3)3)改質Anopore®
之結果---------------------------------------------------- 123
4.2.2.2 以Allyl mercaptan(CH2=CHCH2SH)改質
Anopore® 之結果----------------------------------- 123
4.2.3以鋁片(Al plate)為基材之分子模版高分子複合膜----------- 130
4.2.3.1分子模版高分子薄膜中膽固醇之移除--------------- 130
4.2.3.2 模版高分子薄膜之吸附效能測試之結果----------- 134
4.2.3.2.1 DVB/MAA/Cholesterol聚合溶液---------- 139
4.2.3.2.2 EGDMA/MAA/Cholesterol聚合溶液----- 146
4.2.4以鍍鋁玻璃為基材之分子模版高分子複合膜---------------- 150
4.2.4.1 EGDMA/MAA/Cholesterol聚合溶液------------------ 150
4.2.4.1.1 分子模版高分子薄膜中膽固醇移除------- 150
4.2.4.1.2 模版高分子薄膜吸附效能測試之結果--- 153
第五章 討 論-------------------------------------------------------------------------- 158
5.1 顆粒狀分子模版高分子對膽固醇與黃體酮選擇性之探討----------- 158
5.1.1 單一溶質吸附吸液中之選擇特性--------------------------------- 159
5.1.2 混合溶質吸附液中之選擇特性---------------------------------- 159
5.2 不同基材製備薄膜型分子模版------------------------------------------- 162
5.3 聚合溶液組成對薄膜型分子模版高分子選擇效能之影響---------- 165
第六章 結 論-------------------------------------------------------------------------- 172
第七章 建 議-------------------------------------------------------------------------- 175
參考文獻-------------------------------------------------------------------------------- 176
1.L. B. McGown, M. J. Joseph, J. B. Pitner, G. P. Vonk, and C. P. Linn, “The Nucleic Acid Ligand-A new tool for molecular recognition”, Anal. Chem., 67 (21), 663-668A (1995).
2. D. J. Cram, “The design of molecular hosts, guests,and their and their complexes,(Noble Lecture)”, Angew. Chem. Int. Engl., 27(8), 1009-1020 (1988).
3. J. M. Lehn, “Supramolecular Chemistry-Scope and perspectives, molecules, supermolecules and devices,(Nobel Lecture)”, Angew. Chem. Int. En., 27(1), 89-112 (1988).
4. C. J. Pedersen, “The discovery of crown ethers,(Noble Lecture)”, Angew Chem. Int. Engl., 27(8), 1021-1027 (1988).
5. M. Kempe, “Chiral recognition of Nα-protected amino acids and derivatives in non-covalently molecularly imprinted polymers”, Doctoral thesis, University of Lund, Lund, Swede, 101-112 (1994).
6. D. Kriz and K. Mosbach, “Competitive amperometric morphine sensor based on an agarose immobilized molecularly imprinted polymer”, Analytica Chimica Acta., 300, 71-75(1995).
7. 林宗榮、蔡耀慶、周澤川,「分子模仿版拓印技術-仿人造抗體之合成之介紹」,科儀新知,第二十四巻,第三期,第91-99頁 (2002)。
8.I. Erill, R. Villa, P. Goufignon, L. Fonseca, J.A. Plaza, “Silicon microsystem passivation for high-voltage applications in DNA chips”, Microelectronics and Reliability, 40, 787-789 ( 2000).
9. 吳文騰,生物產業技術概論,全華科技圖書,台北,Chap.8-9,(2003)。
10.黃惠琪,林進益,Joseph Abraham,李育德,「分子拓印仿生感測器」,第二十七屆高分子研討會論文輯,CP-2-27。
11. L. Pauling, “A theory of the structure ank process of formation of antibodies”, J. Am. Chem. Society., 62, 2643-2657 (1940).
12. P.A.G. Cormack and K. Mosbach, “Molecular Imprinting: Recent Developments and the Road Ahead”, React. Funct. Polym., 41(1-3), 115-124 (1999).
13. N. W. Barnett and D. J. Tucker, “Deternubation of morpphine in process streams by sequential injection analysis with chemiluminescence detection”, Fresenius’ J. Anal. Chem., 355(5-6), 591-595 (1996).
14. 林進益,「分子拓印聚合物」,化工資訊,第17-26頁 (2000)。
15. K. Mosbach, “Molecular imprinting”, Trends Biochem. Sci., 19, 9-14(1994).
16. 小泰生物科技報,「淺談奈米科技之應用」,第四巻,第三十六期,(2002)。
17. E. Hogendoorn and P. Zoonen, “Recent and future development of liquid chromatography in pesticide trace analysis ”, J. Chromatogr., A892(1-2), 435-453 (2000).
18. N. Masque, R. M. Marce and F. Borrull, “Molecularly imprinted polymers : new tailor-made materials for selective solid-phase extraction”, TRAC-Trends Anal. Chem., 20(9), 447-486 (2001).
19. H. Sbik, R. Jeannot and B. Rondeau, “Multiresidue methods using solid-phase extraction techniques for monitoring priority pesticides”, J. Chromatogr., A885(1-2), 217-236 (2000).
20. M. C. Hennion, “Soled-phase extraction:method development, sorbents, and soupling with liquid chromatography”, J. Chromatogr., A856(1-2), 3-54 (1999).
21. F. L. Enisg and O. Hayden, “Tailor-Made Materials for Tailor-Made Applications : Application of Molecular Imprints in Chemical Analysis”, Trends Anal. Chem., 18(3), 138-145 (1999).
22. O. Brűggemann, K. Haupt, L. Ye, E. Yilmaz and K. Mosbach, “New configurations and applications of molecularly imprinted polymers,” J. Chromatogr., A 889(1-2), 15-24(2000).
23. C. J. Allender, C. Richardson, B. Woodhouse, C. Heard, C. M. Heard and K. R. Brain, “Pharmaceutical application for molecularly imprinted polymers”, Intl. J. Pharmaceutics, 195(1-2), 39-43 (2000).
24. J .Zhou and H. Xiwen, “Study of the nature of recognition in molecularly imprinted polymer selective for 2-aminopyridine”, Anal. Chem. Acta., 381, 85-91 (1999).
25. N. Tsukagoshi,“Molecularly imprinted polymers”, Drug Discovery Today, 3(6), 297 (1998).
26. M. Kempe and K. Mosbach, “Direct resolution of naproxen on a non-covalently molecularly imprinted chiral stationary phase”, J. Chromatogr., 664, 276-278 (1994).
27. T. L. Zhang, F. Liu, J. Wang and K. A. Li, “Study on the molecular recognition properties of 4-hydroxybenzoic acid-imprinted polymer and salicylic acid-imprinted polymer”, Acta Chimica Sinica., 59(10), 1623-1627 (2001).
28. B. Sellergren and K. Nilsson, “Molecular imprinting by multiple noncovalent host-guest interactions : synthetic polymers with induced specificity”, Meth. Mol. Cell. Biol., 1, 59-61 (1989).
29. B. Sellergren, “Molecular imprinting by noncovalent imteractions : Tailor-made chiral stationary phases of high selectivity and sample load capacity”, Chirality., 1, 63-68 (1989).
30. M. Kempe and K. Mosbach, “Separation of amino acids,peptides and proteins on molecularly imprinted stationary phases”, Journal of Chromatography A, 691, 317-323 (1995).
31. M. Kempe and K. Mosbach, “Chiral separation using molecularly imprinted heteroaromatic polymers”, Journal of Molecular Recognition, 6, 25-29 (1993).
32. L. I. Andersson and K. Mosbach, “Enantiormeric resolution on molecularly imprinted polymers prepared with only non-covalent and non-ionic interaction”, J. Chromatogr., 519, 313-322 (1990).
33. M. Kempe and K. Mosbach, “Novel molecularly imprinted polymers showing unusually high resolution and capacity”, Doctoral thesis, University of Lund, Lund, Swede, 123-132 (1994).
34. M. Kempe, “Novel molecularly imprinted chiral stationary phases”, Doctoral thesis, University of Lund, Swede, 133-154 (1994).
35. L. I. Andersson, D. J. O’Shannessy and K. Mosbach, “Molecular recognition in synthetic polymers : preparation of chiral stationary phases by molecular imprinting of amino acid amides”, Jounal of Chromatogr., 413, 167-179 (1990).
36. L. Andersson, B. Sellergren and K. Mosbach, “Imprinting of amino acid derivatives in macropororus polymers”, Tetrahedron Letters, 25(45), 167-179 (1990).
37. B. Sellergren, B. Ekberg and K. Mosbach, “Molecular imprinting of amino acid derivatives in macroporous polymers. Demonstration of substrate- and enantio-selectivity by chromatographic resolution of racemic mixtures of amino acid derivatives”, J. Chromatogr., 347, 1-10 (1985).
38. B. Sellergren, B. LepostÖ and K. Mosbach, “Highly enantioselective and substrate-selective polymers obtained by molecular utilizing noncoualent interactions. NMR and chromatographic studies on the nature of recognition”, J. Am. Chem .Soc., 110, 5853-5860 (1988).
39. D. J. O''Shannessy, B. Ekberg, L. I. Andersson and K. Mosbach, “Recent advances in the preparion and use of molecularly imprinted polymers for enantiomeric resolution of amino acid derivatives”, Journal of Chromatography, 470, 391-399 (1989).
40. D. Kriz and K. Mosbach, “Thin-layer chromatography based on the molecular imprinting technique”, Anal. Chem., 66, 2636-2639 (1994).
41. D. J. O''Shannessy, B. Ekberg and K. Mosbach, “Molecular imprinting of amino acid derivatives at low temperature (0oC) using photolytic homolysis of azobisnitriles”, Anal. Biochem., 177, 144-149 (1989).
42. D. J. O''Shannessy, L. I. Andersson and K. Mosbach, “Molecular recognition in synthetic polymers. Enantiomeric resolution of amide derivatives of anino acid on molecular imprinted polymers”, J. Mol. Recogn., 2, 1-5 (1989).
43. B. Sellergren, “Molecular imprinting by noncovalent interactions. Enantioselectivity and binding capcity of polymers prepared under conditions favoring the formation of template complexes”, Makromol. Chem., 190, 2703-2711 (1989).
44. L. I. Andersson, A. Miyabayashi, D. J. O''Shannessy and K. Mosbach, “Enantiomeric resolution of amino acid derivatives on molecularly imprinted polymers as monitored by potentiometric measurements,”J. Chromatogr., 516, 323-331(1990).
45. B. Sellergren and K. J. Shea, “Influence of polymer morpholohgy on the ability of imprinted networkpolymers to resolve enantiomers”, J. Chromatogr., 635, 31-49 (1993).
46. B. Sellergren and K. J. Shea, “Chiral ion-exchange chromatography. Correlation between solute retention and a theoretical ion exchange model using imprinted polymers”, J. Chromatogr., A654, 17-28 (1993).
47. J. Matsui, T. Kato, T. Takeuchi, M. Suzuki, K. Yokoyama, E. Tamiya and I. Karube, “Molecular recognition in continuous polymers rods prepared by a molecular imprinting technique”, Anal. Chem., 65, 2223-2224 (1993).
48. K. Haupt, A. Dzgove and K. Mosbach, “ssay system for the herbicide 2,4-D using a molecularly-imprinted polymer as an artificial recognition element”, Anal. Chem., 70(3), 628-631 (1998).
49. 陳彥宇,「分子拓聚合物固相萃取法」,碩士論文,國立高雄師範大學化學系,高雄(2003)。
50. T. Kobayashi, Y. Murawaki, P. S. Reddy, M. Abe and N. Fujii, “Molecular imprinting of caffeine and its recognition assay by quartz-crystal microbalance”, Anal. Chim. Acta., 435(1), 141-149 (2001).
51. M. J. Whitcombe, C. Alexander and E. N. Vulfson, “Smart polymers for the food indrstry”, Trends Fd. Sci. Technol., 8(5), 140-145 (1997).
52. M. Siemann, L. I. Andersson and K. Mosbach, “Selective recognition of the herbizide atrazine by non-covalent molecularly imprinted polymers”, J. Agric. Fd. Chem., 44, 141-145 (1996).
53. O. Ramstromm K. Skrdar, J. Haines, P. Patel and O. Bruggemann, “Food analyses using molecularly imprinted polymers”, J. Agric. Food Chem., 49(5), 2105-2114 (2001).
54. C. C. Hucal, M. J. Bailey, W. H. Braunlin, S. R. Holmes-Farley, W. H. Mandeville, J. S. Petersen, S. C. Polomoscanik, R. J. Sacchiro, X. Chen and P. K. Dhal, “Novel cholesterol lowering polymeric drugs obtained by molecular imprinting”, Macromolecules, 34(6), 1548-1550(2001).
55. R. J. Ansell, D. Kriz and K. Mosbach, “Molecularly imprinted polymers for bioanalysis : chromatography, biomimetecs sensors”, Curr. Opin . Biotechnol, 7, 89-94 (1996).
56. L. I. Andersson, C. F. Mandenius and K. Mosbach, “ Studies on guest selective molecular recognition on an octadecyl silylated silicon surface using ellipsometry”, Tetrahedron Lett., 29, 5437-5440 (1988)
57. D. Kriz, O. RamstrÖm, A. Svensson and K. Mosbach, “Inntroducing biomimetic sensors based on molecularly imprinted polymers as recognition elements”, Anal. Chem., 67, 2142-2144(1995).
58. D. Kriz, “Fluorescence and conductometric measurements using molecularly imprinted polymers as recognition elements in sensing devices”, Doctoral thesis, University of Lund, Lund, Swede, 109-118 (1994).
59. T. Rosatzin, L. I. Andersson, W. Simon and K. Mosbach, “Preparation of Ca2+ selective sorbents by molecular imprinting using polymerisable ionophores”, J. Chem. Soc. Perkin Trans., 2, 1261-1265(1991)
60. E. Hedborg, F. Winquist, I. Lumdstorm, L. Andersson, K. Mosbach, “Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices”, Sens. Actuator A-Phys., 38, 796 (1993).
61. B. Sellergren and L. I. Andersson, “Application of imprinted synthetic polymers in binding assay development”, Methods 22(1), 92-106 (2000).
62. R. Levi, S. McNiven, S. Piletsky, S. A. Cheong, K. Yano and I. Karube, “Optical detection of chloramphenicol using molecularly imprinted polymers”, Anal. Chem. 69(11), 2017-2021 (1997).
63. D. Kriz, O. RamstrÖm and K. Mosbach, “Molecular imprinting – New possibilities for sensor technology”, Anal. Chem. 69(11), 345-349 (1997).
64. S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano and I. Karube, “Atrazine sensing by molecularly imprinted membranes”, Biosensors & Bioelectronics, 10, 959-965 (1995).
65. S. A. Piletsky, E. V. Piletskaya, T. A. Sergeyeva, T. L. Panasyuk, A. V. El''skaya, “Molecularly imprinted self-assembled films with specificity to cholesterol”, Sensors and Actuators, B60, 216-220 (1999).
66. Tanya Pansyuk, Delaney, Vladimir, Mirsky, M. Mathias Ulbricht and S. O. Wolfbeis, “Impedometric herbicide chemosensors based on molecularly imprinted polymers”, Analytica Chimica Acta , 435, 157-162 (2001).
67. Yasuo Yoshimi, Ryo Ohdaira, Chiaki liyama and Kiyotaka Sakai, “ Gate effect of thin layer of molecularly-imprinted poly(methacrylic acid-co-ethyleneglycol dimethacrylate)”, Analytica Chimica Acta., B73, 49-53 (2001).
68. A. Tatiana, Sergeryeva, Heike Matuschewski, A. Sergiy, Piletsky, Jűrgen Bendig, Uwe Schedler and Mathias Ulbricht, “Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization”,mJournal of Chromatography, A907, 89-99 (2001).
69. Masakazu Yoshikawa and Kyoichi Yonitani, “Molecularly imprinted polymeric membranes with oligopeptide tweezers for optical resolution”, Desalination, 149, 287-292(2002).
70. M. Lehmann, H. Brunner, G. E. M. Tovar, “Selective separations and hydrodynamic studies : a new approach using molecularly imprinted nanosphere composite membrane”, Desalination, 147, 15-321 (2002).
71. Francesco Trotta, Enrico Drioli, Claudio Baggiani and Domenico Lacopo, “Molecular imprinted polymeric membrane for naringin recognition”, Journal of Membrane Science , 201, 77-84 (2002).
72. P. Screenivasulu, Reddy, Takaomi Kobayashi, Masanori Abe and Nobuyuki Fujii, “Molecular imprinted Nylon-6 as a recognition material of amino acids”, European Polymer Journal , 38, 521-529 (2002).
73. N. Hilal, V. Kochkodan, G. Busca, O. Kochkodan and B. P. Atkin, “Thin layer composite molecularly imprinted memebranes for selective separation of cAMP”, Separation and Purification Technology, 31, 281-289 (2003).
74. Hong Ying Wang, Shao Ling Xia, Hong Sun, Yu Kun Lin, Shao Kuo Cao and Takaomi Kobayashi, “Molecularly imprinted copolymer membranes functionalized by phase inversion imprinting for uracil recognition and permselective binding”, Journal of Chromatography, B804, 127-134 (2004).
75. Koji Hattori, Michihito Hiwatari, Chiaki Iiyama, Yasuo Yoshimi, Fukashi Kohori, Kiyotaka Sakai and Sergey A. Piletsky, “Gate effect of theophylline-imprinted polymers grafted to the cellulose by living radical polymerization”, Journal of Membrane Science, 233, 169-173 (2004).
76. Ali. Faissal. El. Toufaili, Aleksandra Visnjevski and Oliver Brűggemann, “Screening combinatorial libraries of molecularly imprinted polymer films casted on membranes in single-use membrane modules”, Journal of Chromatography, B804, 135-139 (2004).
77. Miruna Petcu, N. Peter and Christian Schaare, “Propofol-imprinted membranes with potential applications in biosensors,”Analytica Chimica Acta., 504, 73-79 (2004).
78. F. L. Dickert and O. Hayden, “Molecular Imprinting in Chemical Sensing”, Trends Anal. Chem., 18(3), 192-199 (1999).
79. 行政院衛生署統計室。
80. 何敏夫,「臨床化學-原理與實驗」,合記圖書出版社,台北(1996)。
81. 陳香蘭,「平版式酵素電極於膽固醇檢測之應用」,碩士論文,中國文化大學生物科技研究所,台北(2002)。
82. C. C. Huval, M. J. Bailey, W. H. Braunlin, S. R. Holmes-Farley, W. H. Mandeville, J. S. Petersen, S. C. Polomoscanik, R. J. Sacchiro, X. Chen and P. K. Dhal*, “Novel Cholesterol Lowering Polymeric DrugsObtained by Molecular Imprinting”, Macromolecules, 34, 1548-1550 (2001).
83. 黃清江,「分子模印高分子的製備及其層析特性之研究」,博士論文,國立中正大學化學工程研究所,嘉義(2002)。
84. 黃元昌2,李育德2,張巧慧1,張兆網1,喬瑟夫1,林進益1*,「以共價方鍵方式合成膽固醇分子拓印高分子」,第二十七屆高分子研討會論文輯, CP-2-02。
85. http://www.smi.tu-berlin.de/story/MIT.htm
86. Olof Ramstro¨m, Kristina Skudar, John Haines, Pradip Patel, and Oliver Bru¨ggemann*, “Food Analyses Using Molecularly Imprinted Polymers“, J. Agric. Food Chem., 49(5) , 2106 (2001).
87. Further information on the Society for Molecular Imprinting,
http: / / www.ng.hik.se/ SMI.
88. K. Mosbach, O. Ramstrom, “The emerging technique of molecular imprinting and its future impact on biotechnology”, Biotechnology, 14 163-170 (1996).
89. G. Wulff, “Molecular Imprinting in Cross-linked Materials with the Aid of Molecular Templates”,Angew. Chem. Int. Ed. Engl., 34, 1812-1832(1995).
90. K. J. Shea, “Molecular imprinting of synthetic network polymers: the de novo synthesisof macromolecular binding and catalytic sites”, Trends Polym. Sci., 2, 166-173 (1994).
91. J. Steinke, D. C. Sherrington and I. R. Dunkin, “Imprinting of Synthetic Polymers Using Molecular Templates“, Adv. Polym. Sci., 123, 81-125 (1995).
92. 周澤川,分子模版微感晶片,http://imu2.ncku.edu.tw//(2001)。
93. 鶴田楨二,薛敬和,高分子合成反應,高立圖書,p.1-5(2001)。
94. 鄧景鴻,「以膽紅素為模版材料之製備及吸脫附感測之探討」,碩士論文,國立成功大學化學,台南(2003)。
95. F. Svec and J. M. Frechet, “Continuous rods of macroporous polymer as highperformance liquid chromatography separation media,”Analytical Chemistry, 64, pp. 820-822(1992).
96. K. Hosoya, K. Yoshizako, Y. Shirasu, K. Kimata and T. Araki, “Molecularlyimprinted uniform-size polymer-based stationary phase for high performanceliquid chromatography structural contribution of cross-linked polymer network onspecific molecular recognition”, Journal of Chromatography, A728, pp.139-147 (1996).
97. R. J. Ansell and K. Mosbach, “Molecularly imprinted polymers by suspensionpolymerization in perfluorocarbon liquids, with emphasis on the influence of theporogenic solvent”, Journal of Chromatography, A787, pp.55-66 (1997).
98.H. Y. Wang, T. Kobayashi and N. Fujii, ”Molecular imprinting membrance prepared by phase inversion precipitation technique”, Langmuir, 12, pp.4850-4856 (1996).
99. L. Stryer, Biochemistry, 4th, Ed., W. H. Freeman and Company, New York, (1995).
100.賴亮全、林則彬、林富美合譯,「蓋統生理學-生理及疾病機轉」,華杏出版社,台北(1998)。
101. 黃鎮國、賴宗鼎合譯,「羅賓氏病理學」,藝軒圖書出版社,台北(1992)。
102.D. J. McNamara, ”Dietary cholesterol and atherosclerosis”, Biochimicaet Biiophysica Acta ., 1529, 310-320 (2000).
103.G. D. Sloop, “A critical analysis of the role role of cholesterol in atherogenesis”, Atherosclerosis,142, 265-268 (1999).
104.N. J. Wald and M. R. Law, “Serum cholesterol and ischaemic heart disease”, Atherosclerosis , 118, nS1-S5 (1995).
105.W. B. Kannel, ”Range of Serum Cholesterol Values in the Population Developing Coronary Artery Disease”, The American Journal of Cardiology, 76, 69C-77C (1995).
106.Soy and Health 2000, Garant, The Netherland.
107.陳彥宇,「分子拓印聚合物固相萃取法」,國立高雄師範大學化學系,碩士論文,高雄(2003)。
108.J. Matsui, O. D. Dier and T. Takeuchi, ”2-(trifluoromethyl)acrylic acid: A novel functional monomer in non-covalent molecular imprinting“, Anal. Chim. Acta., 343, 1-4 (1997).
109.J. Matsui and T. Takeuchi, “A molecularly imprinted polymer rod as nicotine selective affinity media prepared with 2-(trifluoromethyl)acrylic acid“, Anal. Comm., 34(7), 199-200 (1997).
110.Takayuki Hishiya, Hiroyuki Asanuma, and Makoto Komiyama, ”Spectroscopic Anatomy of Molecular-Imprinting of Cyclodextrin.Evidence for Preferential Formation of Ordered Cyclodextrin Assemblies”, J. Am. Chem. Soc., 124 (4), 570-575 (2002).
111.B. Sellergren, “Man-made mimics of antibodies and their applications in analytical chemistry”, Techniques and instrumentation in analytical chemistry, 42, 23 (2001).
112.K. J. Shea, “Molecular imprinting of synthetic network polymers: the de novo synthesis of macromolecular binding and catalytic sites“, Trends Polym. Sci., 2, 166-173 (1994).
113.M. Kempe and K. Mosbach, “Receptor Binding Mimetics: A Novel Molecularly Imprinted Polymer“, Tetrahed. Lett., 36, 3563-3566 (1995).
114.M. Kempe, “Antibody-Mimicking polymers as chiral stationary phases in HPLC“, Anal. Chem., 68, 1948-1953 (1996).
115.M. J. Whitcombe, M. E. Rodriguez, P. Villar and E. N. Vulfson, “A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors of cholesterol”, Journal of the American Chemical Society, 147, pp.7105-7111 (1995).
116.陳勝捷,「薄膜類固醇分子模版之研究」,碩士論文,國立成功大學化學工程學系,台南(2003)。
117.G. Wulff and A. Biffis, Techniques and Instrumentation in Analytical Chemistry, Elsevier Amsterdam, Vol.23, Chap.4, (2001).
118.W. H. Scouten, Solid Phase Biochemistry, John Wiley & Sons, New York, p.150 (1983).
119.B. Sellergren, Techniques and Instrumentation in Analytical Chemistry, Elsevier Amsterdam, Vol.23, , chap.5, (2001).
120.C. Yu and K. Mosbach, “Molecular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymers“, J. Org. Chem., 62 , 4057 (1997).
121.B. Sellergren, Molecular and Ionic Recognition with Imprinted Polymers, American Chemical Society, Washington, DC, Chap.2 (1998).
122.R. J. Sundberg and R. B. Martin, “Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems“, Chemical Reviews, 74, 471-517 (1974).
123.R. D. Hancock and A. E. Martell, ”Design for Selective Complexation of Metal Ions in Aqueous Solution“, Chem Rev., 89, 1875 (1989).
124.V. A. Davankov, Chromatographic science series, vol.57, D. Caignant(Ed.) Dekker, New York, p.197 (1992).
125.K. Polborn and K. Severin, ”Molecular Imprinting with an Organometallic Transition State Analogue“, Chem. Commun., 2481 (1999).
126.H. Nishide, J. Deguchiand and E. Tsuchida, “Adsorption of Metal Ions on Crosslinked Poly(4-vinylpyridine) Resins Prepared with a Metal Ion as Template”, J. Polym. Sci., Polym. Chem. Ed., 15, 3023 (1977).
127.W. Kuchen and J. Schram, ”Metal-Ion-Selective Exchange Resins by Matrix Imprint with Methacrylates“, Angew. Chem. Int. Ed. Engl., 27, 1695 (1988).
128.T. R. ling, Y. C. Tsai, T. C. Chou and C. C. Liu, 2ed International Workshop on Molecularly Imprinted Polymers, La Grand Motte, France, September 16-19th.
129.C. Alexander, A. Aherne, M. J. Payne, N. Perez and E. N. Vulfson, ” Bacteria-mediated Lithography on Polymer Surfaces”, J. Am. Chem. Soc., 118, 8771 (1996).
130.廖素鈺,「有害毒性氣體在磺酸化聚苯乙烯薄膜中傳送特性之研究」,碩士論文,朝陽科技大學應用化學系,台中(2002)。
131.羅偉碩,「氣體在羧酸化聚苯乙幣薄膜中傳送特性之研究」,碩士論文,朝陽科技大學應用化學系,台中(2002)。
132.C. Yu and K. Mosbach, “Influence of mobile phase composition and cross-linking density on the enantiomeric recognition properties of molecularly imprinted polymers”, J.Chromatogr., A8(1-2), 63-72 (2000).
133.C. C. Hwang and W. C. Lee, “Chromatographic Characteristics of Cholesterol- Imprinted Polymers Prepared by Covalent and Noncovalent Imprinting Methods”, J. Chromatogr., A962, 69-78 (2002).
134.Yasuo Yoshimi, Ryo Ohdaira, Chiaki Iiyama and Kiyotaka Sakai, “”Gate effect''” of thin layer of molecularly-imprinted poly(methacrylic acid-co-ethyleneglycol dimethacrylate”, Sensors and Actuators, B73, 49-53 (2001).
135.Josua Kashammer, Peter Wohlfart, Jurij Weiβ, Carl Winter, Roland Fischer and Silvia Mittler-Neher, “ Selective gold deposition via CVD onto self-assembled organic monolayers”, Optical Materials, 9, 406-410 (1998).
136.G. Wulff, B. Heide and G. Helfimeier, “Molecular Recognition through the Exact Placement of Functional Groups on Rigid Matrices via a Template Approach”, J. Am. Chem. Soc., 108, 1089 (1986).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top