跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 07:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳其揚
論文名稱:使用平行模擬退火法於功能性核磁共振造影影像分析之研究
論文名稱(外文):Using Parallel Simulated Annealing for Functional MRI Analysis
指導教授:葉進儀葉進儀引用關係
指導教授(外文):Jinn-Yi Yeh
學位類別:碩士
校院名稱:大葉大學
系所名稱:工業工程學系碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:功能性核磁共振造影影像平行模擬退火法ROC曲線
外文關鍵詞:Functional magnetic resonance imagingparallel simulated annealingreceiver operating characteristic
相關次數:
  • 被引用被引用:2
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用平行模擬退火法,針對功能性磁振造影產生的影像加以分析,嘗試找出正確的活化區位置,而績效評估方式採用繪製ROC (Receiver Operating Characteristic)曲線,其標準範本由電腦模擬產生,並與兩樣本t 檢定法、二個數列的交互相關係數(Cross-Correlation Coefficient)、線性組合(Linear Model)、及一般的線性組合(General Linear Model)等方法加以比較。
功能性核磁共振造影為一種具非侵入性功能影像工具,可用來研究腦部功能與不同的感官、運動神經、及認知作用上的相關性,也可用來精確分辨腦瘤是否侵犯重要神經功能區,藉以當作醫師臨床開刀之依據。
This research will apply an parallel simulated annealing (PSA) to locate the activation area of the fMRIs. Performance evaluation for the location of the activation area will include receiver operating characteristic (ROC) analysis and comparison with t-test, cross-correlation, and linear model. The golden standard images will be generated by computer simulation.
Functional magnetic resonance image (fMRI) has been proven to be a unique non-invasive functional imaging tool for studying brain function associated with various sensory, motor, and cognitive tasks. It can also be used to avoid the important neural area by a brain tumor surgery that may cause some side effects.
[目錄]
第一章 緒論
1.1 研究背景與動機…………………………………….. 1
1.2 研究目的…………………………………………….. 4
1.3 研究範圍…………………………………………….. 5
1.4 研究重要性………………………………………….. 5
1.5 研究案例…………………………………………….. 6
1.6 研究流程…………………………………………….. 8
第二章 文獻探討
2.1 功能性磁振造影影像分類之相關研究……………... 12
2.2 模擬退火法於分類上之相關研究…………………… 14
2.3 平行模擬退火法之相關研究………………………… 15
第三章 平行模擬退火法
3.1 模擬退火法…………………………………………… 17
3.2 模擬退火法程序……………………………………... 21
3.3 平行環境的介紹……………………………………… 26
3.4 電腦叢集的介紹……………………………………… 27
3.5 平行演算法模型……………………………………… 30
3.6 平行模擬退火法架構(1)…………………………….. 31
3.7 進行平行模擬退火程序(1)………………………….. 33
3.8平行模擬退火法架構(2)…………………………….. 34
3.9 進行平行模擬退火程序(2)…………………………... 35
第四章 績效評量方法
4.1功能性磁振造影影像取樣…………………………… 37
4.2 影像前處理…………………………………………... 39
4.3 績效衡量…………………………………………….. 41
4.4 雜訊比以及面積比設定…………………………….. 44
4.5 臨床實驗……………………………………………... 44
第五章 實驗結果與分析
5.1實驗流程……………………………………………… 45
5.2 實驗架構…………………………………………….. 46
5.3 實驗資訊……………………………………………... 47
5.3.1 ROC曲線分析………………………………… 48
5.3.2 模擬退火法參數設定…………………………. 48
5.3.3 模擬退火法初解實驗…………………………. 49
5.4 各類模擬退火法比較……………………………….. 52
5.5 不同分類方法的比較……………………………….. 52
5.6 雜訊比的影響………………………………………... 55
5.7 激發區面積比實驗…………………………………... 58
5.8 平行模擬退火法實驗環境…………………………... 60
5.9平行架構的比較實驗………………………………... 62
5.10平行模擬退火法比較實驗………………………… 64
5.11 平行模擬退火法在不同雜訊比下的比較實驗…… 66
5.12平行模擬退火法在不同面積比下的比較實驗…… 68
5.13 臨床資料的實驗…………………………………… 71
第六章 結論
6.1 結論………………………………………………….. 76
6.2 未來展望與建議…………………………………….. 77
參考文獻………………………………………………………....... 79
[參考文獻]
[1]張西亞,蔡佳璋,"NCHC PC Cluster 簡介",國家高速電腦中心課程講義,2000。.
[2] 楊順欽, 「二維影像資訊於時間序列中訊號細微變化之檢測-以功能性磁振造影為案例」, 大葉大學工業工程研究所碩士論文, 2002。
[3] Aarts, E. H., De Bont,F. M., Habers, E. H., and Van Laarhoven,P. J., “Statistical cooling: a general approach to combinatorial optimizations”, Philips Journal of Research, 4, pp. 193-226, 1985.
[4] Banerjee, S., Mukherjee, D. Dutta Majumdar, P., D., “Fuzzy c-means approach to tissue classification in multimodal medical imaging”, Information Sciences 115, pp.261-279, 1999.
[5] Baumgartner, R., Somorjai, R., Summers, R., Ricchter, W., “Ranking fMRI Time-Courses by Minimum Spanning Trees(MSTs):Assessing Coactivation in fMRI”, NeuroImage in press, pp.1-25.
[6]Bouhmala, N. and M. Pahud, “A parallel variant of simulated annealing for optimizing mesh partitions on workstations,” Advances Engineering Software, Vol. 29. No. 3-6, pp. 481-485,1998.
[7]Bevilacqua, A., “A Methodological Approach to Parallel Simulated Annealing on an SMP System,” Journal of Parallel and Distributed Computing, Vol. 62, pp. 1548—1570, 2002.
[8]Bongiovani G. and P. Crescenzi, “Parallel Simulated Annealing for Shape Detection,” Computer Vision and Image Understanding, Vol. 61, No. 1, pp. 60-69, 1995.
[9]Chu, K. W., Y. Deng, and J. Reinitzy, “Parallel Simulated Annealing by Mixing of States,” Journal of Computational Physics, Vol. 148, pp. 646—662, 1999.
[10] GiBon, D., Rousseau, J., Castelain, B., Blond, S., Vasseur, C. and Marchandise, X., “Treatment planning optimization by conjugate gradients and simulated annealing methods in stereotactic radiosurgery”, Int. J. Radiation Oncology Biol. Phys., Vol. 33. No. 1. pp.201-210, 1995.
[11] Hyvarinen A.,”Survey on independent component analysis”, Neural Computing Surveys 2, pp.94-128, 1999.
[12] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M.P., “Optimization by simulated annealing”, Science, Vol. 200, No.4956, pp. 671-680, 1983.
[13] Lundy, M. and Mees, A., “Convergence of an annealing algorithm”, Mathematical Programming, Vol. 34, pp.111-124, 1986.
[14] Loncaric, S. and Majcenic, Z., “Multiresolution CT head image analysis using simulted annealing”, Proceedings of the 20th Int Conference Information Technology Interfaces, pp. 257-262, Pula, Croatia, 1998.
[15]Mahfoud, S. W. and D. E. Goldberg, “Parallel recombinative simulated annealing and genetic algorithm,” Parallel Computing Vol. 21, pp. 1-28, 1995.
[16] Nicholas, L., Stephen, C., Strother, J. R., Anderson, F. Å., Nielsen, A. P., Holmes, T., Kolenda, R. S., and Hansen, L. K. “Plurality and resemblance in fMRI data analysis”, NeuroImage, Vol. 10, pp. 282—303, 1999.
[17] Ozkan, M., Dawant, B. M., and Maciunas, R. J., “Neural-network-based segmentation of multi-modal medical images: A comparative and prospective study”, IEEE Transactions
[18]Ram, D. J., T. H. Sreenivas, and K. G. Subramaniam, “Parallel Simulated Annealing Algorithms,” Journal Of Parallel and Distributed Computing, Vol. 37, pp.207—212, 1996.
[19] Shang, H. L. and Baba, C. V., “Efficient hybrid search for visual reconstruction problems”, Image and Vision Computing 17 (1999) 37—49.
[20] Simonen C.Z., Ostergaard, L., and Smith D.F., et al. “Comparison of Gradient Echo and Spin Echo Imaging:CBF、 CBV and MTT Measurements by Bolus Tracking”, Journal of Magnetic Resonance Imaging 12, pp. 411-416, 2000.
[21] Schnack, H. G., Hulshoff Pol, H. E., Barre, W. F. C., Viergever, M. A., and Kahn, R. S., “Automatic Segmentation of the Ventricular System from MR Images of the Human Brain”, NeuroImage, 14, pp.95-104, 2001.
[22] Sanghamitra Bandyopadhyay a,*, Ujjwal Maulik, “Genetic algorithm-based clustering technique”,Pattern Recognition 33, pp.1455-1465, 2000.
[23] Sven, L. and Zoran, M., “Multiresolution CT Head Image Analysis using Simulted Annealing”, Proceedings of the 20th Int Conference Information Technology Interfaces, pp. 257-262, Pula, Croatia, 1998.
[24]Vales-Alonso, J., J. Fern_andez, F. J. Gonz_alez-Casta, and A. Caballero, “A parallel optimization approach for controlling allele diversity in conservation schemes,” Mathematical Biosciences Vol. 183, pp. 161—173, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top