跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宜玲
研究生(外文):Li Yi Ling
論文名稱:利用AeromonascaviaeDYU-BT4之幾丁質分解酵素水解幾丁質生產N-乙醯幾丁寡醣
論文名稱(外文):Production of N-acetylchitooligosaccharides by Chitin Hydrolysis Using a Chitinase from Aeromonas caviae DYU-BT4
指導教授:涂瑞澤涂瑞澤引用關係余世宗余世宗引用關係
指導教授(外文):J. R. TooS. T. Yu
學位類別:碩士
校院名稱:大葉大學
系所名稱:生物產業科技學系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:107
中文關鍵詞:幾丁質分解酵素Aeromonas caviae
外文關鍵詞:chitinaseAeromonas caviae
相關次數:
  • 被引用被引用:7
  • 點閱點閱:429
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為篩選土壤中具有分解幾丁質能力之菌株,利用HPLC分析幾丁質水解產物,藉由發酵槽大量培養,探討不同碳源濃度下,生質量、還原醣量、幾丁質分解酵素活性及N-乙醯葡萄糖胺之產量,以DEAE-Sepharose CL-6B離子交換層析管柱與Sephadex G-100膠體過濾層析管柱純化不同培養時間之幾丁質分解酵素,並利用SDS-PAGE分析幾丁質分解酵素之蛋白質的分子量與酵素之特性。
從雲林縣濁水溪河畔之土壤,篩選出具有分解幾丁質能力之
菌株,此菌株經新竹食品工業發展研究所生物資源保存及研究中
心鑑定為Aeromonas caviae,故命名為Aeromonas caviae DYU- BT4。此菌株於蝦殼粉、烏賊軟骨、幾丁質粉末及膠態幾丁質為碳源之培養基中,其幾丁質水解產物是以N-乙醯葡萄糖胺為主,其中以膠態幾丁質為碳源時所得之N-乙醯葡萄糖胺產量最高,約為39% (w/w)。以發酵槽批次培養菌株BT4可以縮短N-乙醯葡萄糖胺之生產時間,提高培養基碳源濃度則可增加N-乙醯葡萄糖胺產量。
Aeromonas caviae DYU-BT4之發酵液經純化後,以SDS-PAGE分析,在分離膠體中添加0.1%乙二醇幾丁質,可直接從膠片上得知具有幾丁質分解酵素活性之蛋白質分子量為75 kDa。此酵素之最適反應溫度為40℃;最適反應pH為7;由酵素動力反應中,Km值為1.87 g/L,Vmax值為213 U/L;Co2+可提高酵素活性,而Ag+、Ba2+、Hg2+、K+及Zn2+等金屬離子會對酵素活性有抑制作用。
The purpose of this study is to isolate an indigenous microorga- nism to degrade chitin and to produce hydrolysates of chitin. Hydro- lysates of chitin were analyzed by the method of HPLC. The effect of carbon concentration on biomass, reducing sugar, chitinase activity and N-acetylglucosamine in a batch fermenter was studied. Purification of chitinases produced at different culture times was carried out by an ion exchange chromatography column with DEAE-sepharose CL-6B gel and by a gel filtration chromatography column with Sephadex G- 100 gel. The molecular weight and the characteristics of each of chitinase proteins was identified with an SDS-PAGE.
A microbe, DYU-BT4, isolated from the soil of Zwou-Shau-Shi in the Yunlin county was used to degrade chitin. The microbe had been identified to be Aeromonas caviae by the Food Industry Research Development Institute at Hsin-Chu of Taiwan and was named as Aeromonas caviae DYU-BT4. The microbe was cultivated in media with different carbon-sources, such as shrimp shell powder, squid pens, chitin powder and colloidal chitin. The major chitin hydrolysate from the cultivation of strain DYU-BT4 was N-acetylglusamine. The highest yield of N-acetylglucosamine (about 39% (w/w)) was obtained by using the colloidal chitin as a carbon source. Experimental results have shown that the time required to produce N-acetylglucosamine can be shortened and the yield of N-acetylglucosamine can be raised as the carbon concentration in the medium was elevated during a cultivation of strain DTU-BT4 in a batch fermemter.
After the supernatant of the culture broth of Aeromonas caviae DYU-BT4 was purified, the portion of the protein with chitinase activity was examined by the SDS-PAGE containing 1% glycol chitin, and its molecular weight was identified to be 75 kDa. The optimum reacting temperature of the 75-kDa enzyme was 40℃, and the optimal pH was 7.0. The enzymatic reaction value, Km, for the 75-kDa enzyme was measured to be 1.87 g/L and the value of Vmax was 213 U/L. Metal ion Co2+ can promote the chitinase activity, and other metal ions such as Ag+, Ba2+, Hg2+, K+ and Zn2+ will inhibit the chitinase activity.
目 錄
封面內頁
簽名頁
授權書..................................................iii
中文摘要................................................iv
英文摘要................................................v
誌謝...................................................vii
目錄...................................................viii
圖目錄.................................................xiii
表目錄.................................................xvi
第一章 緒論.............................................1
第二章 文獻回顧.........................................3
2.1幾丁質.............................................3
2.1.1幾丁質之結晶結構................................3
2.1.2幾丁質之製備....................................5
2.2幾丁質分解酵素.....................................5
2.2.1幾丁質分解酵素的分佈............................5
2.2.2幾丁質分解酵素之分類............................6
2.2.3幾丁質分解酵素的活性測定........................8
2.3 N-乙醯幾丁寡醣....................................10
2.3.1 N-乙醯幾丁寡醣之製備..........................10
2.3.2 N-乙醯幾丁寡醣之分離..........................11
2.3.3 N-乙醯幾丁寡醣之應用..........................12
2.4酵素分離與純化....................................12
2.4.1硫酸銨沈澱.....................................13
2.4.2離子交換層析法.................................13
2.4.3膠體過濾層析法.................................13
2.5 SDS-PAGE之原理..................................16
2.5.1聚丙烯醯胺凝膠的形成和結構.....................16
2.5.2起始劑、增速劑和聚合...........................17
2.5.3聚丙烯醯胺凝膠之分離機制.......................17
2.5.4聚丙烯醯胺凝膠染色.............................20
2.6微生物Aeromonas caviae之簡介.......................22
2.6.1微生物Aeromonas caviae之特性...................22
2.6.2微生物Aeromonas caviae之相關研究...............22
第三章 材料與方法......................................25
3.1藥品..............................................25
3.2儀器設備..........................................26
3.3培養基與試劑的配製................................27
3.3.1培養基之組成...................................27
3.3.2膠態幾丁質之製備...............................28
3.3.3蝦殼粉之製備...................................29
3.3.4烏賊軟骨之製備.................................29
3.3.5 McIlvaine buffer之配製...........................29
3.3.6呈色劑之配製...................................29
3.3.7樣品緩衝液之配製...............................29
3.3.8 CBR染液之配製................................29
3.3.9脫色液之配製...................................30
3.3.10電泳緩衝液之配製..............................30
3.4幾丁質分解菌之篩選................................32
3.4.1採樣地點.......................................32
3.4.2篩選菌株.......................................32
3.4.3菌種保存.......................................32
3.5批次發酵槽之發酵試驗..............................33
3.5.1批次發酵培養條件...............................33
3.5.2操作步驟.......................................33
3.6分析方法..........................................34
3.6.1幾丁質分解酵素活性測定.........................34
3.6.2還原醣含量.....................................34
3.6.3生質量與幾丁質殘餘量之測定.....................35
3.7幾丁質分解酵素之特性分析..........................35
3.7.1粗酵素液之最適基質濃度.........................35
3.7.2粗酵素液之最適反應pH值........................35
3.7.3粗酵素液之最適反應溫度.........................36
3.8 N-乙醯幾丁寡醣之測定..............................36
3.8.1水解產物前處理.................................36
3.8.2高效能液相層析儀分析...........................37
3.9 N-乙醯幾丁質分解酵素純化..........................37
3.9.1 硫酸銨沉澱....................................37
3.9.2 離子交換層析..................................37
3.9.3 膠體過濾層析..................................37
3.10 SDS-聚丙醯胺膠體電泳分析.........................39
3.10.1樣品前處理....................................39
3.10.2製備SDS-聚丙醯胺膠片.........................39
3.10.3分子量之分離..................................39
3.10.4膠片染色與脫色................................41
3.10.5在電泳膠片上分析幾丁質分解酵素活性............41
3.11純化酵素之特性分析...............................41
3.11.1酵素液之最適反應pH值與pH值穩定性...........41
3.11.2酵素液之最適反應溫度與溫度穩定性..............42
3.11.3酵素液之最適基質濃度..........................42
3.11.4金屬離子對酵素活性之影響......................43
第四章 結果與討論......................................44
4.1 幾丁質分解菌之篩選...............................44
4.1.1各菌株之生長曲線..............................44
4.1.2各菌株之幾丁質分解酵素活性比較................44
4.1.3篩選菌株之水解產物分析.........................47
4.1.4菌株BT4之鑑定.................................47
4.2幾丁質粗酵素液之特性分析..........................51
4.2.1最適反應基質濃度..............................51
4.2.2最適反應pH值.................................51
4.2.3最適反應溫度..................................54
4.3不同碳源之水解產物分布............................56
4.4批次發酵培養.....................................61
4.4.1生質量.........................................61
4.4.2還原醣量.......................................61
4.4.3幾丁質分解酵素活性.............................62
4.4.4 N-乙醯葡萄糖胺產量............................62
4.5 N-乙醯幾丁質分解酵素純化..........................68
4.5.1於1%幾丁質培養基之批次發酵培養................68
4.5.2於2%幾丁質為碳源之批次發酵培養................71
4.6 SDS-聚丙醯胺膠體電泳分析..........................81
4.7純化酵素之特性分析................................91
4.7.1最適反應pH值與pH值穩定性.....................91
4.7.2最適反應溫度與溫度穩定性.......................91
4.7.3最適基質濃度...................................94
4.7.4金屬離子對酵素活性之影響.......................99
第五章 結論...........................................101
參考文獻..............................................102
參考文獻
1.王三郎(1997)蝦蟹加工廢棄物之利用。水產資源利用學,高立圖書公司,台北,75-80。
2.朱元珍、陳幸臣(2004)人體糞便中產氣莢膜桿菌幾丁質煤的純化與性質之研究。台灣幾丁質幾丁聚醣學會年會暨幾丁質類生物高分子研討會論文集,11-16。
3.李美葉(2000)幾丁質類物質在膳食與醫療之助益及潛在問題。生物資源生物技術,2(2): 29-33。
4.林仲聖、薛夢娟、廖桂晴(2001)蝦殼廢棄物中幾丁質酶生產菌的篩選及最適生長條件的探討。元培學報,8: 21-35。
5.火田 野功太(1992)幾丁質、脫乙醯幾丁質與幾丁質水解酶在日本之研究發展現況。生物產業,3: 157-167。
6.陳錦坤、許清輝、李錦榆、林忠亮、方炳勳、黃冬梨、吳奇生(2001)在電泳片上直接分析chitinase活性的新方法。明志技術學院90學年度技術與教學研討會論文專輯,21-23。
7.陳坤上、李國誥、陳幸臣(1994)醣類對Aeromonas caviae的生長及水解蝦殼能力之影響。食品科學,21(2): 96-106。
8.陳坤上、黃佩芬、陳聰松、陳幸臣(1996)幾丁寡醣製備條件之探討。食品科學,23(6): 874-883。
9.陳澄河(2003)蝦蟹殼傳奇。科學發展,369: 62-67。
10.陳思豪(2003)利用溶菌酵素水解幾丁質生產N-乙醯幾丁寡醣之分析應用及量產條件之研究。大葉大學食品工程研究所碩士論文,彰化。
11.陳榮輝、金曉珍(1995)水產甲殼類廢棄物開發高經濟價值之幾丁質、幾丁聚醣、幾丁寡醣研究之規劃報導。科學發展月刊,23(6): 550-562。
12.陳幸臣(2000)幾丁質酵素生產與應用。食品生物技術研討會專輯,基隆,34-41。
13.陳淑德、蕭玉玲、林世斌(2002)培養基對木黴菌(Trichoderma harzianum)發酵生產幾丁質酵素的影響。宜蘭技術學報,9: 9-14。
14.莊榮輝(2000)酵素純化方法。酵素化學與分析-酵素化學實驗,國立台灣大學農業化學系生物化學實驗室,台北。
15.連德昇(2002)以本土菌株分解幾丁質生產N-乙醯幾丁寡醣之研究。大葉大學食品工程研究所碩士論文,彰化。
16.郭尧君(1999)凝胶电泳的支持介质。蛋白质电泳实验技术,科学出版社,北京,14-35。
17.郭尚鑫、陳錦坤、李文乾(2004) Aeromonas schubertii的胞外幾丁質水解酵素雙聚物之研究分析。台灣幾丁質幾丁聚醣學會年會暨幾丁質類生物高分子研討會論文集,138-142。
18.張瓊瑋、連德昇、凃瑞澤、余世宗(2004) Aeromonas sp. DYU-Too7幾丁質分解酵素之純化與特性分析。台灣幾丁質幾丁聚醣學會年會暨幾丁質類生物高分子研討會論文集,124-127。
19.蘇南維、李敏雄 (1998) Listonella damsela NTU-FC-6 幾丁質酵素之生產與基本性質之探討。中國農業化學會誌,36(1): 65-76。
20.梁舜欣(1990)N-乙醯幾丁寡醣製備。台灣大學農業化學研究所碩士論文,台北。
21.薛家倩(2004) SDS-PAGE蛋白質電泳分離技術。化工資訊與商情,7: 73-79。
22.龜山猶一 (1981) 化學分析試藥配製法。正文書局,台北。
23.Chen, H. C. (1994) Purification and characterization of chitinase produced from Aeromonas caviae. The 3th International Marine Biotechnology Conference, Tromso, Norway.
24.Chen, H. C. and K. S. Chen (1991) Isolation of chitinolytic bacteria and their hydrolytic activity on shrimp shells. Proceeding of the National Science Council, ROC. Part: B, Life Science, 15: 233-239.
25.Davis, B. and D. E. Eveleigh (1984) Chitosanases: occurrence, production and immobilization. In ‘‘Chitin, Chitosan and Related Enzymes’’ J. P. Zikakis, eds., Academic Press, Orlando, 161-179.
26.Dawson, R.M.C., D. C. Elliott, W. H. Elliott, and K. M. Jones, (1969) Data for Biochemical Research, 2nd Ed., Oxford Univ. Press. New York.
27.Ekenler, M. and M. A. Tabatabai (2002) Effects of trace elements on β-glucosaminidase activity in soils. Soil Biol. Biochem., 34: 1829-1832.
28.Guo Y. J. and R. J. Bishop (1982) Chromatography, 234: 459-462.
29.Gooday, G. W. (1990) The ecology of chitin degradation. Adv. Microb. Ecol., 11: 387-430.
30.Havukkala, I., C. Mitamura, S. Hara, K. Hirayae, Y. Nishizawa and T. Hibi (1993) Induction and purification of Beauveria bassiana chitinolytic enzymes. J. Intervent. Radiol., 61: 97-102.
31.Imoto, T., and K. Yagishita. (1971) A simple activity measurement of lysozyme. Agric. Biol. Chem., 35: 1154-1156.
32.Jeuniaux, C. (1966) Chitinases, In: Methods in Enzymology, pp. 644- 650, E. F. Neufeld and V. Ginsburg, Academic Press, New York.
33.Kafetzopoulos, D., A. Martinou, and V. Bouriotis (1993) Bioconversion of chitin to chitosan: Purification and characterization of chi- tin deacetylase from Mucor rouxii. Proc Natl Acad Sci USA 90: 2564-2568.
34.Knorr, D. (1984) Use of chitinous polymer in food, Food Technol., 1: 85-89.
35.Krieg, N. R. (1984) Facultatively anaerobic gramnegatie rods., In: Bergey’s Manual of Determinative Bacteriology, pp. 545-548, Science Press, Beijing.
36.Kurita, K. (2001) Controlled functionalization of the polysaccharide chitn, Prog. Polym. Sic., 26: 1921-1971.
37.Leah, R., H. Tommerup, I. Svendsen and J. Mundy (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem., 19: 196-201.
38.Minke, R. and J. Blackwell (1978) The structure of α-chitin. J. Mol. Biol., 120: 167-181.
39.Mitsutomi, M., A. Ohtakara, T. Fukamizo and S. Goto (1990) Action pattern of Aeromonas hydrophila chitinase on partially N-acetylated chitosan. Agric Biol Chem., 54(4): 871-877.
40.Molano, J., A. Puran and E. Cabib (1975) A rapid and sensitive assay for chitinase using tritiated chitin. Anal. Biochem., 83: 648-656.
41.Muzzarelli, R. A. A. (1977) Chitin, Appl. Environ. Microbiol., 53: 1717-1724.
42.Oh, Y. S., I. L.Shih, Y. M. Tzeng and S. L. Wang (2000) Protease produced by Psudomonas aeruginosa K-187 and its application in the deproteinization of shrimp and crab shell wastes. Enzyme Microb. Tech., 27: 3-10.
43.Otakara, A., M. Mitsutomi and Y. Uchida (1979) Purification and some properties of chitinase from Vibrio sp. J. Ferment. Technolo., 57(3): 169-177.
44.Parham, J. A. and S. P. Deng (2000) Detection, quantification and characterization of β-glucosaminidase activity in soils. Soil Biol. Biochem., 32: 1183-1190.
45.Righetti, P. G., E. Gianazza, C. Gelfi and M. Chiari (1990) In: Gel Electrophoresis of Proteins. A Practical Approach, pp. 149-216, B. D. Hames and D. Richwood eds., 2nd Ed., Oxford University Press, Oxford, New York.
46.Roberts, G. A. F. (1982) Chitin Chemistry. The MacMillan Press, London.
47.Suzuki, K., T. Mikami, Y. Okawa, A. Tokoro, S. Suzuki and M. Suzuki (1986) Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydrate Res., 151: 403-412.
48.Usui, T., Y. Hayashi, F. Nanjo, K. Sakai and Y. Ishido (1987) Transglycosylation reaction of a chitinase purified from Nocardia orientalis. Biochim. Biophys. Acta., 923: 302-309.
49.Ulhoa, C. J. and J. F. Peberdy (1991) Regulation of chitinase synthesis in Trichoderma harzianum. J. Gen. Microbiol., 137: 2163-2169.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 7.陳坤上、李國誥、陳幸臣(1994)醣類對Aeromonas caviae的生長及水解蝦殼能力之影響。食品科學,21(2): 96-106。
2. 3.李美葉(2000)幾丁質類物質在膳食與醫療之助益及潛在問題。生物資源生物技術,2(2): 29-33。
3. 11.陳榮輝、金曉珍(1995)水產甲殼類廢棄物開發高經濟價值之幾丁質、幾丁聚醣、幾丁寡醣研究之規劃報導。科學發展月刊,23(6): 550-562。
4. 13.陳淑德、蕭玉玲、林世斌(2002)培養基對木黴菌(Trichoderma harzianum)發酵生產幾丁質酵素的影響。宜蘭技術學報,9: 9-14。
5. 19.蘇南維、李敏雄 (1998) Listonella damsela NTU-FC-6 幾丁質酵素之生產與基本性質之探討。中國農業化學會誌,36(1): 65-76。
6. 21.薛家倩(2004) SDS-PAGE蛋白質電泳分離技術。化工資訊與商情,7: 73-79。
7. [6] 李良梧,「漫談建築、空調系統與節約能源」,冷凍空調技術雜誌,1991年6月,第101-104頁。
8. [7] 黃傳興,「空調主機節約能源方法」,中國冷凍空調雜誌,1992年6月,第59-66頁。
9. [9] 傅定儀、趙宏耀,「電子廠節能源方向與案例說明」,中國冷凍空調雜誌,1996年2月,第79-89頁。
10. [17] 胡耀祖、劉中哲,「冰水主機能源效率與冷媒發展趨勢」, 能源節約技術報導,44期,1992,第22-38頁。
11. [26] 周淑貞,「新版冰水主機性能標準ARI Standard 550/590-98相較於舊版的改變及其影響」,冷凍與空調雜誌,2000,第132-135頁。