跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/24 17:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾志業
研究生(外文):Chih-Yeh Chung
論文名稱:磁控濺鍍法製備質子交換膜燃料電池白金觸媒層之研究
論文名稱(外文):Study of Proton Exchange Membrane Fuel Cell with Sputter-Deposited Pt Catalyst Layer
指導教授:陳士堃
指導教授(外文):S.K.Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:81
中文關鍵詞:磁控濺鍍氣體擴散層奈米燃料電池退火處理極化曲線白金碳纖維
外文關鍵詞:carbon fiberV-I curveannealinggas diffusion layerSEMfuel cellplatinummagnetron sputteringnanometer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以磁控濺鍍的方式來製作質子交換膜燃料電池之碳電極的 Pt 觸媒層,並研究基材的變化、Pt 披覆量的多寡、真空度的高低以及臨場退火熱處理等對所製成之 Pt 薄膜碳電極的影響。在相等的 Pt 披覆量下,濺鍍 Pt 在碳布上所得到的效能要比直接將 Pt 濺鍍在 Nafion 膜上要好( 150 vs. 50 mA/cm2 ,負載 0.6 V),且其效能與商用 E-TEK 碳電極相等。Pt 薄膜碳電極使用於陽極時的放電效能並非絕對隨著 Pt 披覆量的增加而提升,雖然 0.4 mg Pt/cm2 的放電功率最大,但在比較 Pt 活性時,卻以0.1 mg Pt/cm2 的表現最佳(1500 A/cm2/g,負載0.6 V)。本實驗所有的試片中,以在背景真空度為1.0 x 10-2 torr 時濺鍍 0.4 mg Pt/ cm2 於碳布上所製成之 Pt 薄膜碳電極的放電效能為最高( 306 mA/cm2 ,負載 0.6 V),較商用 E-TEK 碳電極的效能高約25%。在濺鍍製程中對基材施予退火熱處理所製成之 Pt 薄膜碳電極用於當作燃料電池陰極時,雖較其他 Pt 薄膜碳電極的效能高出一倍,但與 E-TEK 碳電極相比較(240 mA/cm2 vs. 68 mA/cm2,負載0.6 V),仍有一段差距。以濺鍍法所製備之低電阻 Pt 薄膜碳電極僅適合用於當作燃料電池的陽極,而利用濺鍍法來製備燃料電池之陰極觸媒層的研究到目前為止尚未出現超越傳統製程的效果。
Sputter deposition has been investigated as a tool for manufacturing proton exchange membrane fuel cell electrodes with improved performance and catalyst utilization vs. ink-based electrodes. The effects of substrate, Pt catalyst loading, vacuum degree and in-situ annealing treatment on the performance of PEMFC Pt film electrode made by magnetron sputtering has been studied in this project. The anode made by sputtering Pt on carbon cloth performs as well as E-TEK electrode (232 vs. 240 mA/cm2 at 0.6 V, 0.4 mg Pt/cm2), but the anode made by sputtering Pt directly on N117 shows no any power output as Pt loading is 0.4 mg Pt/cm2. The performance of Pt film electrode used as PEMFC anode doesn’t absolutely promote with increasing Pt loading, although the Pt film electrode with 0.4 mg Pt/cm2 shows the best performance, the Pt film electrode with 0.1 mg Pt/cm2 shows a better Pt catalyst utilization (1500 A/cm2-g at 0.6 V). In all samples, the Pt film anode made by sputtering process at a background vacuum of 1.0 x 10-2 torr provides the highest electric power (306 mA/cm2 at 0.6 V, 0.4 mg Pt/cm2), the performance is 25% higher than that of E-TEK electrode.
The Pt film electrode with low resistance made by magnetron sputtering is only suitable for PEMFC anode. In-situ annealing treatment to substrates in sputtering process promotes the power output of the Pt film electrode used as PEMFC cathode over 100%, but comparing with E-TEK electrodes, there is still a big gap (68 vs. 240 mA/cm2 at 0.6 V, 0.4 mg Pt/cm2).
中文摘要......................................................................I
英文摘要.....................................................................II
目錄........................................................................III
圖目錄........................................................................V
表目錄.....................................................................VIII
第一章 緒論..................................................................1
1-1 前言..................................................................1
1-2 文獻回顧..............................................................6
1-2-1 燃料電池開發史….................................................6
1-2-2 國際間燃料電池技術的創新突破....................................11
1-2-3 台灣燃料電池研發現況............................................15
1-2-4 應用濺鍍沈積法製備鉑觸媒層之研究狀況............................16
1-3 研究動機.............................................................18
第二章 燃料電池原理探討.....................................................21
2-1 燃料電池原理.........................................................21
2-2 燃料電池之熱力學探討.................................................24
2-3 燃料電池之極化探討...................................................28
2-4 燃料電池效率之探討...................................................32
第三章 實驗.................................................................35
3-1 實驗設計.............................................................35
3-2 實驗過程............................ ................................39
3-2-1 試片製備........................................................39
3-2-2 膜極組(Membrane Electrode Assembly)製備.......................46
3-2-3 燃料電池組裝及測試..............................................48
第四章 結果與討論...........................................................51
4-1 基材分析.............................................................51
4-2 基材效應.............................................................57
4-3 Pt 披覆量效應.......................................................63
4-4 真空調變效應........................................................67
4-5 熱處理效應..........................................................71
第五章 結論.................................................................75
參考文獻.....................................................................78


圖 目 錄

圖 1-1 燃料電池發展史........................................................7
圖 1-2 William R. Grove 所製造的「氣體電池」.................................8
圖 1-3 濺鍍法與一般傳統的油墨式Pt觸媒層之單位質量使用效率與單位面積發電量的比較...........................................................................19
圖 2-1 燃料電池反應示意圖...................................................21
圖 2-2 典型燃料電池之極化曲線...............................................31
圖 2-3 提升燃料電池性能之方法...............................................33
圖 3-1 在不同真空度下濺鍍 0.4 mg Pt / cm2 之碳纖維 SEM 照片.................37
圖 3-2 濺鍍槍與試片之相對位置示意圖.........................................40
圖 3-3 實驗室的真空濺鍍系統.................................................41
圖 3-4 質導膜濺鍍製程之裝置示意圖...........................................43
圖 3-5 MEA 製備流程之示意圖.................................................46
圖 3-6 以質導膜為基材時,MEA 製備流程之示意圖...............................47
圖 3-7 燃料電池測試模具實體照片.............................................48
圖 3-8 石墨雙極板實體照片...................................................48
圖 3-9 氣體流場實體照片.....................................................48
圖 3-10 集電板實體照片......................................................48
圖 3-11 端板實體照片........................................................48
圖 3-12 絕緣螺絲組件實體照片................................................48
圖 3-13 已使用 Teflon 墊片完成氣密準備的 MEA實體照片 .......................49
圖 4-1 E-TEK 碳電極之 SEM 縱剖面照片 .......................................52
圖 4-2 E-TEK 碳電極表面觸媒層的多孔隙粒狀結構 SEM 照片......................52
圖 4-3 經過 1500℃ 石墨化處理之碳纖維 SEM 照片..............................54
圖 4-4 經過 20 wt% 疏水處理之碳纖維 SEM 照片................................55
圖 4-5 E-TEK碳紙纖維與纖維間的樹脂的 SEM 照片...............................56
圖 4-6 表面緻密的質子傳導膜 N117 的 SEM 照片................................56
圖 4-7 改變不同陽極基材對放電效能之影響(Pt 披覆量0.4 mg/cm2)..............57
圖 4-8 披覆 4 mg Pt/cm2 之碳纖維 SEM 照片...................................59
圖 4-9 SEM 照片 (a) 碳紙,(b) 碳布(已濺鍍披覆 0.4 mg Pt/cm2)..............60
圖 4-10 已濺鍍 0.4 mg Pt/cm2 的導質膜 N117 實體照片.........................62
圖 4-11 改變不同陽極基材對放電效能之影響(Pt 披覆量0.1 mg/cm2).............62
圖 4-12 改變陽極 Pt 披覆量對放電效能之影響..................................63
圖 4-13 濺鍍 0.1 mg Pt/cm2 於碳布上之 SEM 照片..............................65
圖 4-14 濺鍍 0.4 mg Pt/cm2 於碳布上之 SEM 照片..............................65
圖 4-15 濺鍍 0.8 mg Pt/cm2 於碳布上之 SEM 照片..............................66
圖 4-16 不同真空度對陽極效能之影響..........................................67
圖 4-17 背景真空度為1.0 x 10-2 Torr 時,濺鍍 0.4 mg Pt/cm2 於碳布上之 SEM 照片...........................................................................69
圖 4-18 背景真空度為1.0 x 10-4 Torr 時,濺鍍 0.4 mg Pt/cm2 於碳布上之 SEM 照片...........................................................................69
圖 4-19 陽極退火熱處理對放電效能的影響......................................71
圖 4-20 不同濺鍍製程所製備之碳電極用於陰極時之放電效能......................73



表 目 錄

表 1-1 燃料電池比較表........................................................2
表 2-1 燃料電池與傳統發電(火力或核能)之比較...............................23
表 2-2 氫氧燃料電池反應之自由能改變量與理想電位.............................26
表 2-3 不同金屬催化之氫電極的交換電流密度...................................29
表 3-1 不同真空度下的 Pt 鍍率...............................................41
表 3-2 燃料電池的測試條件...................................................50
表 4-1 實驗基材之比表面積與截面電阻值(除了Baseline以外,其餘四種基材皆尚未披覆觸媒層)...................................................................51
表 4-2 碳纖維石墨化處理溫度對BET與表面電阻係數之影響........................53
表 4-3 改變不同陽極基材對最大放電功率之影響.................................58
表 4-4 改變陽極 Pt 披覆量對最大功率與 Pt 活性之影響.........................64
表 4-5 不同真空度下所製備之碳電極用於陽極時的最大功率比較.................. 68
表 4-6 陽極退火熱處理的最大功率.............................................72
表 4-7 試片用於陰極時的輸出電流密度比較(負載為 0.6 V).....................73
[1] 小椋直嗣,河村義裕,五十嵐哲,マイクロリアクターによる小型燃料電池システム,化學工學會第67 年會,福岡(2002).
[2] M. Warshay and P.R. Procopius, “The fuel cell in space: yesterday, today and tomorrow”, J. Power Sources, 29 (1990) 193-200.
[3] Arthur D. Little Inc., Cost Analysis of Fuel Cell Systems for Transportation: Baseline System Cost Estimate, Final Report to Department of Energy (2000).
[4] F.N. Buchi and S. Srinivasan, “Operating proton exchange membrane fuel cells without external humidification of the reaction gases: Fundamental aspect”, J. Electrochem. Soc., 144 (1997) 2767-2772.
[5] J.H. Lee and T.R. Lalk, Modelling fuel cell stack systems”, J. Power Sources, 73 (1998) 229-241.
[6] S.J. Lee, “Effect of nafion impregnation on performance of PEMFC electrodes”, Electrochimica Acta, 43 (1998) 3693-3701.
[7] E. A. Ticianelli, C. R. Derouin, and S. Srinivasan, J. Electroanal. Chem., 251, 275(1988).
[8] M. S. Wilson. U.S. Pat. 5,211,984 (1993).
[9] V. A. Paganin, E. A. Ticianelli, and E. R. Gonzalez, in Proton Conducting Fuel Cells I, S. Gottesfeld, G. Halpert, and A. Landgrebe, Editors, PV 95-23, p. 102, The Electrochemical Society Proceedings Series, Pennington, NJ (1995).
[10] C. K. Witham, W. Chun, T. I. Valdez, and S. R. Narayanan, Electrochem. Solid-State Lett., 3, 497 (2000).
[11] E. J. Taylor, E. B. Anderson, and N. R. K. Vilambi, J. Electrochem. Soc., 139, L45(1992).
[12] K. H. Choi, H. S. Kim, and T. H. Lee, J. Power Sources, 75, 230 (1998)
[13] S. Srinivasan, D. J. Manko, J. Koch, M. A. Enayetullah, and A. J. Appleby, J. Power Sources, 29, 367 (1990).
[14] E. A. Ticianelli, C. R. Derouin, A. Redondo, and S. Srinivasan, J. Electrochem. Soc., 135, 2209 (1988).
[15] S. Mukerjee, S. Srinivasan, and A. J. Appleby, Electrochim. Acta, 38, 1661 (1993).
[16] S. Hirano, J. Kim, and S. Srinivasan, Electrochim. Acta, 42, 1587 (1997).
[17] C. K. Witham, W. Chun, T. I. Valdez, and S. R. Narayanan, Electrochem. Solid-State Lett., 3, 497 (2000).
[18] S. Y. Cha and W. M. Lee, J. Electrochem. Soc., 146, 4055 (1999).
[19] E. A. Ticianelli, C. R. Derouin, A. Redondo and S. Srinivasan, J. Electrochem. Soc. 185, 2209 (1988).
[20] E. A. Ticianelli, C. R. Derouin and S. Srinivasan, J. Electroanal Chem. 251, 275 (1988).
[21] E. J. Taylor, E. Anderson and N. Vilambi, J. Electrochem. Soc. 139, L45 (1992).
[22] M. Wilson and S. Gottesfeld, J. Electrochem. Soc. 139, L28 (1992).
[23] M. W. Verbrugge, J. Electrochem. Soc. 141, 46 (1992).
[24] A.C. Ferreira, S. Srinivasan and A. J. Appleby, Extended Abstracts of the 181st Meeting of the Electrochemical Society, St Louis, Missouri.( The Electrochemical Society, Pennington, New Jersey, 1992).
[25] A.C. Ferreira, S. Srinivasan and A. J. Appleby, Extended Abstracts of the 182nd Meeting of the Electrochemical Society, Toronto, Ontario. ( The Electrochemical Society, Pennington, New Jersey, 1992)
[26] S. Srinivasan, A. C. Ferreira, A. Parthasarathy, O. A. Velev and A. J. Appleby, Methods to Attain High Energy Efficiencies and Long Lifetimes in Polymer Acid Fuel Cells, Annual Report, Grant No. NAG3-1125, NASA-Lewis Research Center, Cleveland OH, June (1992).
[27] S. Swathirajan and Y. M. Mikhail, Extended Abstracts of the 185th Meeting of the Electrochemical Society, San Francisco, California. ( The Electrochemical Society, Pennington, New Jersey, 1994), p.967.
[28] A.C. Ferreira, S. Srinivasan and A. J. Appleby, Extended Abstracts of the 185th Meeting of the Electrochemical Society, San Francisco, California, May, 1994, 969. The Electrochemical Society, Pennington, New Jersey (1994).
[29] S. R. Narayanan. U.S. Pat. 6,171,721 B1 (2001).
[30] H. Bloom, and F. Cutman, Electrochemistry, (Plenum Press, 1981), p.121.
[31] A. J. Appleby, and F. R. Foulkes, A Fuel Cell Handbook,(Kreiger Publishing Co. 2nd edited, 1993), p.22.
[32] A. T. Haug, R. E. White, J. W. Weidner, W. Huang, S. Shi, T. Stoner, and N. Rana, J. Electrochem. Soc., 149, A280 (2002).
[33] P. Andreazza, C. Andreazza-Vignolle, J. P. Rozenbaum, A. -L. Thomann, P. Brault, Surf. Coatings Tech. 151-152, 122 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊