跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/16 17:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何佩倉
研究生(外文):Pei-Tsang Ho
論文名稱:不同晶面與不同氮離子佈植劑量對載子遷移率之影響
論文名稱(外文):Influence of Carrier Mobility by Implanting Different Nitrogen Dosages into Different Silicon Substrates
指導教授:楊文祿
指導教授(外文):Wen-Luh Yang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:78
中文關鍵詞:P型金氧半電晶體氮離子佈植劑量幾何形狀載子遷移率
外文關鍵詞:nitrogen implantation dosagesPMOSFETcarrier mobilitygeometric figure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文研究的主題在於以不同氮離子佈植劑量於三種不同晶面~Si (100)、Hydrogen Annealed Wafer、Si (111)在P型金氧半電晶體中觀察氮離子對載子遷移率 (Mobility,μ) 的影響。
首先,在不同晶面與不同氮離子佈植劑量對載子遷移率影響的研究方面,我們發現Si (111) 的載子遷移率擁有高出Hi-wafer、Si (100) 60%左右的特性。而氮離子佈植於通道的劑量達5×14 ions/cm2能有效改善Si (100)、 Hi-wafer的載子遷移率,但是Si (111) 卻會因為氮離子佈植於通道而使得載子遷移率下降。
另外一部份在探討溫度與幾何形狀對載子遷移率的影響。由結果顯示,Si (111) 在高溫時的載子遷移率衰退比Si (100)、 Hi-wafer來得大。而且Si (111) 會隨著閘極W/L比值的變大使得載子遷移率的衰退變大,因此在未來應用Si (111)當作矽基底時,應注意W/L的比值不應該太大以避免影響元件的操作速度。
Abstract
The subject of this thesis is to investigate the effect of carrier mobility (μ) by implanting different nitrogen dosages into different silicon substrates such as Si(100)、Hydrogen Annealed Wafer and Si(111) on PMOSFET.
First of all, about the different silicon substrates and nitrogen implantation dosages for the influence of carrier mobility, we find the value of carrier mobility of Si(111) split is about 60% higher than that of Si(100) and Hi-wafer splits. In addition, heavy nitrogen implantation dosage, up to 5×14 ions/cm2, into channel could improve the carrier mobility on Si(100) and Hi-wafer splits effectively, but degrade the carrier mobility on Si(111) split.
Furthermore, the effects of carrier mobility on temperature and geometric figure of gate electrode were investigated. Results show the carrier mobility on Si(111) split has worse degradation proportion than that on Si(100) and Hi-wafer splits due to the high temperature measurement. Besides, the carrier mobility on Si(111) split would be worse degraded as a higher width/length (or length/width) ratio. Therefore, a suitable W/L (or L/W) ratio is needed to avoid decreasing the operation speed on Si(111) split MOSFET.
中文摘要……………………………………………………………......i
英文摘要……………………………………………………………......ii
致謝…………………………………………………………………......iii
目錄…………………………………………………………………......v
圖、表目錄……………………………………………………………viii
第一章 緒論……………………………………………………………..1
1.1 背景………………………………………………................1
1.1.1 Si (100)………………………………………………………5
1.1.2 Si (111)………………………………………………………5
1.1.3 Hydrogen Annealed Wafer (Hi-wafer)………………............6
1.2 量測方法……………………………………………………6
1.2.1電壓-電容特性分析 (C-V)………………………….............6
1.2.2 ID-VGS 特性曲線……………………………………………6
1.3 論文架構…………………………………………………….7
第二章 元件製程………………………………………………………10
2.1 晶片刻號,曝零層及形成N-Well…………………………10
2.2 形成 LOCOS………………………………………………..11
2.3 消除 Kooi effect…………………………………………….11
2.4 成長閘極氧化層,定義閘極,做S/D extension結構…….12
2.5 形成基極,佈植砷離子及活化摻雜……………………….13
2.6 做接觸窗 (contact hole),接出金屬導線,燒結………….13
第三章 不同劑量氮離子佈植對不同晶面載子遷移率的影響………18
3.1 引言以及動機……………………………………………….18
3.2 實驗過程與條件…………………………………………….19
3.3 結果與討論……………………………………………….....19
3.3.1 電容-電壓 (C-V) 基本特性……………………………...19
3.3.2 不同晶面基本特性與載子遷移率(Mobility,μ)大小........21
3.3.3 不同氮離子佈植對Si (100)載子遷移率的影響………….23
3.3.4不同氮離子佈植對Hi-wafer載子遷移率的影響…………24
3.3.5不同氮離子佈植對Si (111)載子遷移率的影響…………..25
3.4 綜合比較與結論…………………………………………….27
第四章 溫度與幾何形狀對載子遷移率的影響………………………54
4.1引言以及動機………………………………………………...54
4.2 實驗過程…………………………………………………….55
4.3 結果與討論………………………………………………….55
4.3.1 幾何圖形對載子遷移率的影響…………………………..55
4.3.2 溫度對載子遷移率的影響………………………………..58
4.4 結論………………………………………………………….59
第五章 總結已及未來方向……………………………………………72
參考文獻………………………………………………………………..74
參考文獻
【1】S. M. Sze, “Physics of Semiconductor Devices”, Second printing July, p.469-486.
【2】Yuan Taur, Tak H. Ning, “Fundamentals of Modem VLSI Devices”, First published 1998, Reprinted 1999, p.161, 187.
【3】Buchanan, D. A and Lo, S. –H “Reliability and integration of ultra-thin gate dielectrics for advanced CMOS” Microelectron. Eng., 1997, 36, pp.13-20.
【4】H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. –I. Nakamura, M. Saito, and H. Iwai, “1.5nm Direct-tunneling Gate Oxide Si MOSFETs”, IEEE Trans. Electron Devices, vol. 43, pp.1233, Aug. 1996.
【5】K. S. Krish et al., “Impact of boron diffusion through O2 and N2O gate dielectrics on the process margin of dual-poly low-power CMOS,” in IEDM Tech. Dig., 1994, pp. 325–328.
【6】International Technology Roadmap for Semiconductors, 2003.
【7】X. Zheng et al., “AC hot-carrier-induced degradation in NMOSFETs with N2O-based gate dielectrics,” IEEE Electron Device Lett., vol. 18,pp. 39–41, Feb. 1997.
【8】M. Bhat et al., “MOS characteristics of ultrathin NO-grown oxynitrides,” IEEE Electron Device Lett., vol. 15, pp. 421–423, Oct. 1994.
【9】G. D. Wilk et al., “Hafnium and zirconium silicates for advanced gate electrics,” J. Appl. Phys., vol. 87, no. 1, pp. 484–492, Jan. 2000.
【10】L. Manchanda,W.H. Lee, J.E. Bower, F.H. Baumann,W.L. Brown, C.J. Case, R.C. Keller, Y.O. Kim, E.J. Laskowski, M.D. Morris, R.L. Opila, P.J. Silverman, T.W. Sorsch, G.R. Weber, “Gate quality doped high K films for CMOS beyond 100 nm: 3-10 nm Al2O3 with low leakage and low interface states.” IEDM Technical Digest (1998) 605.
【11】E.P. Gusev, M. Copel, E. Cartier, I.J.R. Baumvol, C. Krug, M. Gribelyuk, “High-resolution depth profiling in ultra-thin Al2O3 films on Si.” Appl. Phys. Lett. 76 (2000) 176.
【12】M. Copel, E. Cartier, E.P. Gusev, S. Guha, N. Bojarczuk, M. Poppeler. “ Robustness of ultra-thin aluminum oxide dielectrics on Si(001).”Appl. Phys. Lett. 78 (2001) 2670.
【13】D.A. Buchanan, E.P. Gusev, E. Cartier, H. Okorn-Schmidt, K. Rim, M.A. Gribelyuk, A. Mocuta, A. Ajmera, M. Copel,S. Guha, N. Bojarczuk, A. Callegari, C. D’Emic, P. Kozlowski, K. Chan, R.J. Fleming, P.C. Jamison, J. Brown, R.Arndt, “80 nm poly-silicon gated n-FETs with ultra-thin Al2O3 gate dielectric for ULSI applications.” IEDM Technical Digest (2000) 223.
【14】C. Chaneliere, J.L. Autran, R.A.B. Devine, B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications.” Mat. Sci. Eng. Reports R22 (1998) 269.
【15】G.B. Alers, D.J.Werder, Y. Chabal, H.C. Lu, E.P. Gusev, E. Garfunkel, T. Gustafsson, R. Urdahl, ”Intermixing at the tantalum oxide/silicon interface in gate dielectric structures.” Appl. Phys. Lett. 73(1998) 1517.
【16】M. Copel, M. Gribelyuk, E.P. Gusev,” Structure and stability of ultra-thin zirconium oxide layers on Si(001).” Appl. Phys. Lett. 76 (2000) 436.
【17】E.P. Gusev, M. Copel, E. Cartier, D.A. Buchanan, H. Okorn-Schmidt, M. Gribelyuk, D. Falcon, R. Murphy, S. Molis,I.J.R. Baumvol, C. Krug, M. Jussila, M. Tuominen, S. Haukka, “Physical characterization of ultra-thin films of highdielectric constant materials on silicon, “ in: H.Z. Massoud, E.H. Poindexter, M. Hirose, I.J.R. Baumvol (Eds.), "The Physics and Chemistry of SiO2 and the Si–SiO2 Interface ", The Electrochemical Soc, Pennington, NJ, 2000, p. 477.
【18】E.P. Gusev, E. Cartier, M. Copel, M. Gribelyuk, D.A. Buchanan, H. Okorn-Schmidt, C. D’Emic, P. Kozlowski, M.Tuominen, M. Linnermo, S. Haukka, “Ultra-thin high-K dielectrics grown by atomic layer deposition: a comparative study of ZrO2 , HfO2 , Y2O3 and Al2O3,” in: F. Rooseboom, P. Timans, K.G. Reid, M.C. Ozturk, D.L. Kwong (Eds.), Rapid Thermal and Other Short-time Processing Techniques, ECS, Pennigton, 2001, in press.
【19】T.S. Jeon, J.M. White, D.L. Kwong, “Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100).” Appl. Phys. Lett. 78 (2001) 368.
【20】Wen-Jie Qi, Renee Nieh, Byoung Hun Lee, Laegu Kang, Yongjoo Jeon, Katsunori Onishi, Tat Ngai, Sanjay Banerjee and Jack C. Lee, “MOSCAP and MOSFET characteristics using ZrO2 gate dielectric deposition directly on Si.” In IEDM Tech. Dig., pp.145,1999.
【21】K. S. Krisch, M. L. Green, F. H. Baumann, D. Brasen, L. C. Feldman, and L. Manchanda, “Thickness dependence of boron penetration through O2- and N2O-grown gate oxides and its impact on threshold voltage variation,” IEEE Trans. Electron Devices, vol. 43, p. 982, June 1996.
【22】Z. J. Ma, J. C. Chen, Z. H. Liu, J. T. Krick, Y. C. Cheng, C. Hu, and P. K. Ko, “Suppression of boron penetration in P+ poly-silicon gate P-MOSFET’s using low-temperature gate-oxide N2O anneal,” IEEE Electron Device Lett., vol. 15, p. 109, Mar. 1994.
【23】K. Onishi, C. S. Kang, R. Choi, H.-J. Cho, S. Gopalan, R. Nieh, S. Krishnan, and J. C. Lee, “Improvement of surface carrier mobility of HfO2 MOSFETs by high-temperature forming gas annealing,” IEEE Trans.Electron Devices, vol. 50, pp. 384–390, Feb. 2003.
【24】Y. Okada et al., “Furnace grown gate oxynitride using nitric oxide (NO),” IEEE Trans. Electron Devices, vol. 41, pp. 1608–1612, Sept.1994.
【25】C. T. Liu and Y. Ma, “Light nitrogen implant for preparing thin-gate oxides,” IEEE Electron Device Lett., vol. 18, pp. 105–107, Mar. 1997.
【26】I.-H. Nam et al., “Nitrogen profile effects on the growth rate of gate oxides grown on N-implanted silicon,” J. Vac. Sci. Technol., vol. B19,no. 1, pp. 299–304, Jan./Feb. 2001.
【27】L. K. Han et al., “Electrical characteristics and reliability of sub-3nm gate oxides grown on nitrogen implanted silicon substrate,” in IEDM Tech. Dig., 1997, pp. 643–646.
【28】C. T. Liu et al., “Preventing boron penetration through 25 gate oxide with nitrogen implant in the Si substrates,” IEEE Electron Device Lett., vol. 18, pp. 212–214, May 1997.
【29】C. H. Lee et al., “A manufacturable multiple gate oxinitride thickness technology for system on a chip,” in IEDM Tech. Dig., 1999, pp.491–494.
【30】H. Gossner, F.Wittmann, I. Eisele, T. Grabulla, and D. Behammer, “Vertical MOS technology with sub-0.1 um channel lengths,” Electron. Lett., ol. 31, no. 16, pp. 1394–1396, 1995.
【31】H. S. Momose, T. Ohguro, S.-I. Nakayama, Y. Toyoshima, H. Ishiuchi, and H. Iwai, “Ultra-thin gate oxide CMOS on (111) surface-oriented Si substrate,” IEEE Trans. Electron Devices, vol. 49, pp. 1597–1605, Sept.2002.
【32】J. W. Yang, A. Lunev, G. Simin, A. Chitnis, M. Shatalov, M. Asif Khan, J. E. Van Nostrand, and R. Gaska, Appl. Phys. Lett. 76, 273 (2000).
【33】A. Osinsky, S. Gangopadhyay, J. W. Yang, R. Gaska, D. Kuksenkov, H. Temkin, I. K. Shmagin, Y. C. Chang, J. F. Muth, and R. M. Kolbas, Appl. Phys. Lett. 72, 551 (1998).
【34】Koji Izunome, Hiroshi Shirai, Kazuhiko Kashima, Jun Yoshikawa, and Akimichi Hojo ”Oxygen precipitation in Czochralski-grown silicon wafers during hydrogen annealing ” Appl. Phys. Lett. 1996, Vol.68, pp.49-50.
【35】Y. Matsushita, M. Wakatuski, and Y. Saito, Extended Abstracts of the 18th Conference on Solid State Devices and Materials, Yokohama, 1986 (J. Soc. Appl. Phys., Tokyo, 1986), p. 529.
【36】T. Ohguro, M. Saito, E. Morifuji, K. Murakami, K. Matsuzaki, T. Yoshitomi, T. Morimoto, H. S. Momose, Y. Katsumata, and H. Iwai, “High efficiency 2 GHz power Si-MOSFET design under low supply voltage down to 1 V,” in IEDM Tech. Dig., 1996, pp. 83–86.
【37】J. Yugami, T. Itoga, and M. Ohkura, “Highly-reliable gate oxide formation for giga-scale LSI’s by using closed wet cleaning system and wet oxidation with ultra-dry unloading,” in IEDM Tech. Dig., 1995, pp. 855–858.
【38】K. Kumar, A. Chou, A. I. Chou, C. Lin, P. Chowdhury, J. C. Lee, and J. K. Lowell, “Optimization of sub-3 nm gate dielectrics grown by rapid thermal oxidation in a nitric oxide ambient,” Appl. Phys. Lett., vol. 70, no. 3, pp. 384–386, 1997.
【39】H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito, and H. Iwai, “1.5 nm direct-tunneling gate oxide Si MOSFET’s,” IEEE Trans. Electron Devices, vol. 43, pp. 1233–1241, Aug. 1996.
【40】H. Fang, K. S. Krisch, B. J. Gross, C. G. Sodini, J. Chung, and D. A. Antoniadis, “Low-temperature furnace-grown re-oxidized nitrided oxide gate dielectric as a barrier to boron penetration,” IEEE Electron Device Lett., vol. 13, pp. 217, Apr. , 1992.
【41】A. B. Joshi, J. Ahn, and D. L. Kwong, “Oxynitride gate dielectric for P+ poly-silicon gate CMOS devices,” IEEE Electron Device Lett., vol. 14, pp. 560, Dec., 1993.
【42】K. Hieda, K. Sunouchi, H. Takato, A. Nitayama, F. Horiguchi, and F. Masuoka, “Sub-half-micrometer concave MOSFET with double LDD structure,” IEEE Trans. Electron Devices, vol. 39, pp. 671–676, Mar. 1992.
【43】M. Jurczak, E. Josse, R. Gwoziecki, M. Paoli, and T. Skotnicki, “Investigation on the suitability of vertical MOSFETs for high speed (RF) CMOS applications,” in Proc. 28th Eur. Solid-State Device Res. Conf., 1998, pp. 172–175.
【44】X. Zheng, M. Pak, P. J. Huang, S. Choi, and K. L. Wang, “A vertical MOSFET with a leveling, surrounding gate fabricated on nano-scale island,” in 56th Annu. Device Res. Conf. Dig., 1998, pp. 70–71.
【45】“Semiconductor Physics & Devices”, 2nd ED, Donald A. Neamen, Chapter 10
【46】G. Groeseneken, H. E. Maes, N. Beltran, and R. F. Keersmaecker, “A reliable approach to charge pumping measurements in MOS transistors,” IEEE Trans. Electron Devices, vol. ED-31, p. 42, Jan. 1984.
【47】S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. Stricker, F. Illien, N. Felber, W. Fichtner, S. Mettler, S. Lindenkreuz, and L. Zullino, “Electron and hole mobility in silicon at large operating temperatures—Part I: Bulk mobility,” IEEE Trans. Electron Devices, to be published.
【48】S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. Stricker, F. Illien, N. Felber, W. Fichtner, S. Mettler, S. Lindenkreuz, and L. Zullino, “Electron and hole mobility in silicon at large operating temperatures—Part II: Surface mobility,” IEEE Trans. Electron Devices, to be published.
【49】G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus- and boron-doped silicon,” IEEE Trans. Electron Devices, vol. ED-30, pp. 764–769, July 1983.
【50】S. S. Li and W. R. Thurber, “The dopant density and temperature dependence of electron mobility and resistivity in n-type silicon,” Solid State Electron., vol. 20, pp. 609–616, 1977.
【51】S. S. Li, “The dopant density and temperature dependence of hole mobility and resistivity in boron-doped silicon,” Solid State Electron., vol. 21, pp. 1109–1117, 1978.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文