跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/03 14:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林育璋
研究生(外文):Lin Yu-Chang
論文名稱:以氧化鋁奈米多孔模板輔助成長硫化鉛熱電奈米線之研究
論文名稱(外文):Alumina Nanopores Template-Assisted Growth of Lead Sulfide Thermoelectric Nanowires
指導教授:施仁斌
指導教授(外文):J. B. Shi
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:101
中文關鍵詞:熱電奈米線氧化鋁奈米多孔模板
外文關鍵詞:alumin nanopore templatethermoelectric nanowires
相關次數:
  • 被引用被引用:4
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
經由熱電理論計算結果指出奈米線結構能夠提升熱電元件之熱電轉換效率,若將奈米線之線徑大小縮小至10 nm,則熱電效率指數( ZT ) 可高達6,相當於熱電轉換效率~30%。由於熱電奈米線之高熱電轉換效率的潛力,進而吸引有許多研究群紛紛投入研究。
本研究以鋁薄片與鋁膜作為基材,經由陽極氧化法製備具有週期性規則排列之蜂巢狀多孔結構氧化鋁模板,平均孔徑大小為40-60 nm,厚度2-39 μm。硫化鉛熱電奈米線的製備是將氯化鉛與硫元素溶於DMSO有機溶液作為電解液,再以電化學沈積法於氧化鋁模板之奈米孔道內成長硫化鉛奈米線。經由電子顯微鏡觀察結果顯示硫化鉛熱電奈米線的線徑大小為50 nm,線徑高度超過1 μm。X 光能量散譜儀 ( EDS ) 微區定性與定量分析結果鉛與硫之原子比率相當接近1:1。
Thermoelectric theory has predicted that the efficiency of thermoelectric devices can be increased by thermoelectric figure of merit of 6. The results of theoretical calculation show that nanowire structures have the potential to significantly improve the thermoelectric figure of merit if nanowire diameter can be decreased to 10 nm. Recent work in thermoelectric nanowire has attracted a great deal of research interest because of their potential application in thermoelectric devices.
In this work, we use aluminum foil and aluminum film as substrate to fabricate periodic nanopore arrangement in porous alumina template using an anodic oxidation method. The pore array of the film has a uniform, closely packed honeycomb structure approximately from 40 to 60 nm in diameter and from 2 to 39 μm thickness.
PbS nanowire arrays were grown in highly ordered nanochannel of an alumina template using electrodeposition from a dimethylsulfoxide solution cotaining PbCl2 and elemental sulfur. Electromicroscopy results showed that PbS nanowires with diameters of about 50 nm and lengths up to 1 μm were synthesized. X-ray energy dispersion analysis indicates that the atomic composition of Pb and S is very close to a 1:1 stoichiometry.
致謝 I
中文摘要 II
英文摘要 III
目錄 IV
表目錄 VI
圖目錄 VII
第1章 序論 1
1.1 前言 1
1.2 研究動機與目的 2
第2章 文獻回顧 6
2.1 熱電現象 6
2.1.1 Seebeck 效應 6
2.1.2 Peltier 效應 8
2.2 熱電元件 11
2.3 多孔性結構之氧化鋁模板 14
2.3.1 氧化鋁奈米多孔模板的結構特徵 14
2.3.2 氧化鋁奈米多孔模板的成長機制 16
2.3.3 氧化鋁奈米多孔模板的製備變因 20
2.3.4 氧化鋁奈米多孔模板製備一維奈米結構材料 26
第3章 研究方法 39
3.1 實驗材料與設備 40
3.1.1 基板材料 40
3.1.2 化學藥品 40
3.1.3 陽極處理系統 40
3.1.4 電化學沈積系統 41
3.1.5 RF磁控濺鍍系統 42
3.1.6 熱處理系統 43
3.2 氧化鋁奈米多孔模板的製備 44
3.2.1 鋁薄片陽極處理 44
3.2.2 鋁膜陽極處理 46
3.3 硫化鉛熱電奈米線的製備 48
3.4 分析與鑑定 50
3.4.1 表面與橫截面形貌觀察 50
3.4.2 元素分析 51
第4章 結果與討論 52
4.1 鋁薄片陽極處理研究 52
4.1.1 鋁薄片陽極氧化形成多孔性氧化鋁膜 52
4.1.2 磷酸效應之探討 60
4.1.3 陽極氧化時間與氧化鋁膜成長之關係 60
4.1.4 陽極氧化電壓與奈米孔道大小之關係 61
4.2 鋁膜陽極處理研究 71
4.2.1 鋁膜陽極氧化形成多孔性氧化鋁膜 71
4.2.2 磷酸效應之探討 76
4.2.3 溫度效應之探討 76
4.3硫化鉛熱電奈米線成長研究 80
第5章 結論 86
5.1 鋁薄片陽極處理 86
5.2 鋁膜陽極處理 86
5.3 硫化鉛熱電奈米線的成長 87
第6章 未來展望 88
參考文獻 89
[1] H. J. Goldsmid, Applications of Thermoelectricity, John Wiley / Sons Inc, New York, 1960.
[2] Irving B. Cadoff, Thermoelectric Materials and Devices, Chapman / Hall, New York, 1960.
[3] L. D. Hicks, M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor,” Physical Review B, 47(24), 16631-16634, 1993.
[4] 魏炯權編著,「電工材料」,全華科技圖書股份有限公司,台北,1993。
[5] 譚奇賢編著,「電鍍原理與工藝」,天津科學技術,天津,1993。
[6] Hideki Masuda, Kenji Fukuda, “Ordered Metal Nanohole Arrays by A Two-Step Replication of Honeycomb Structures of Anodic Alumina,” Science, 268, 1466-1468, 1995.
[7] A. P. Li, F. A. Birner, K. Nielsch, U. Gosele, “Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by Self-Organization in Anodic Alumina,” Journal of Applied Physics, 84(11), 6023-6026, 1998.
[8] Zhibo Zhang, Jackie Y. Ying, Mildred S. Dresselhaus, “Bismuth Quantum-Wire Arrays Fabricated by A Vacuum Melting and Pressure Injection Process,” Journal of Materials Research, 13(7), 1745-1748, 1998.
[9] J. Li, C. Papadopoulos, J. M. Xu, M. Moskovits, “Highly Ordered Carbon Nanotube Arrays for Electronics Applications,” Applied Physics Letters, 75(3), 367-369, 1999.
[10] Jung Sang Suh, Jin Seung Lee, “Highly Ordered Two-Dimensional Carbon Nanotube Arrays,” Applied Physics Letters, 75(14), 2047-2049, 1999.
[11] Tatsuya lwasaki, Taiko Motoi, Tohru Den, “Multiwalled Carbon Nanotubes Growth in Anodic Alumina Nanoholes,” Applied Physics Letters, 75(14), 2044-2046, 1999.
[12] Shoushan Fan, Micheal G, Chapline, Nathan R. Franklin, Thomas W. Tombler, Alan M. Cassell, Hongjie Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Science, 283, 512-514, 1999.
[13] Dongsheng Xu, Dapeng Chen, Yajie Xu, Xuesong Shi, Guolin Guo, Linlin Gui, Youqi Tang, “Preparation of II-VI Group Semiconductor Nanowire Arrays by DC Electrochemical Deposition in Porous Aluminum Oxide Templates,” Pure and Applied Chemistry, 72(1), 127-135, 2000.
[14] Y. Li, G. W. Meng, and L. D. Zhang, “Ordered semiconductor ZnO nanowire arrays and their Photoluminescence Properties,” Applied Physics Letters, 76(15), 2011-2013, 2000.
[15] Eicke R. Weber, Recent Trends in Thermoelectric Materials Research, Academic Press, New York, 2001.
[16] Rama Venkatasubramanian, Edward Siivola, Thomas Colpitts, Brooks O’Quinn, “Thin-film thermoelectric devices with high room-temperature figure of merit,” Nature, 413, 597-602, 2001.
[17] X S Peng, G W Meng, J X Zhao, X F Wang, Y W Wang and L D Zhang, “Electrochemical fabrication of ordered Bi2S3 nanowire arrays,” Journal of Physics D, 34, 3224-3228, 2001.
[18] Soo-Hwan Jeong, Hee-Young Hwang, Kun-Hong Lee, “Template-Based Carbon Nanotubes and Their Application to A Field Emitter,” Applied Physics Letters, 78(14), 2052-2054, 2001.
[19] X S Peng, G W Meng, J X Zhao, X F Wang, Y W Wang and L D Zhang, “Electrochemical Fabrication of Ordered Bi2S3 Nanowire Arrays,” Journal of Physics D, 34, 3224-3228, 2001.
[20] A. J. Yin, J. Li, W. Jian, A. J. Bennett, J. M. Xu, “Fabrication of Highly Ordered Metallic Nanowire Arrays by Electrodeposition,” Applied Physics Letters, 79(7), 1039-1041, 2001.
[21] P.M. Paulus, F. Luis, M. Kroll, G. Schmid, L.J. de Jongh, “Low-Temperature Study of The Magnetization Reversal and Magnetic Anisotropy of Fe, Ni, and Co Nanowires,” Journal of Magnetism and Magnetic Materials, 224, 180-196, 2001.
[22] Soo-HwanJeong, Hee-Young Hwang, Kun-Hong Lee, “Template-based carbon nanotubes and their application to a field emitter,” Applied Physics Letters, 78(14):2052-2054, 2001.
[23] 陳貴賢、吳季珍,「一維奈米材料的研究」,物理雙月刊,23卷6期,609-613,2001。
[24] 張立德編著,「奈米材料」,五南圖書出版公司,台北,2002。
[25] 林鴻明,「奈米材料未來的發展趨勢」,科技發展政策報導,SR9109,648-659,2002。
[26] 王正金、周淑金、李秉璋、王正和,「金屬氧化物奈米模板製備及其應用簡介」,工業材料雜誌,185期,165-170,2002。
[27] 呂世源,「奈米新世界」,科學發展,359期,4-7,2002。
[28] K. Nielscha, R.B. Wehrspohna, J. Barthela, J. Kirschnera, S.F. Fischerb, H. Kronm. ullerb, T. Schweinb.ockc, D. Weissc, U. G. oselea, “High Density Hexagonal Nickel Nanowire Array,” Journal of Magnetism and Magnetic Materials, 249, 234-240, 2002.
[29] Y.C. Sui, B.Z. Cui, L. Martez, R. Perez, D.J. Sellmyer, “Pore Structure, Barrier Layer Topography and Matrix Alumina Structure of Porous Anodic Alumina Film,” Thin Solid Films, 406, 64-69, 2002.
[30] Joan Redwing, Theresa Mayer, Suzanne Mohney and Ari Mizel, “Building Blocks for Nanoscale Electronics,” NSF Nanoscale Science and Engineering Grantees Conference, Dec 11-13, 2002.
[31] Kin-Tak Lau and David Hui, “The revolutionary Creation of New Advanced Materials—Carbon Nanotube Composites,”Composites Part B, 33, 263-277, 2002.
[32] Takeshi Ohgai, Xavier Hoffer, Laurent Gravier, Jean-Eric Wegrowe and Jean-Philippe Anesrmet, “Spin-Valves and Multilayers in Self-Organized Anodized Aluminum Nanopores,”Institute of Physics Publishing, 14, 978-982, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top