|
[1] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bur. Standards.,45(1950), pp.255-282 [2] Daniel B. Szyld, Judith A. Vogel, FQMR: a flexible quasi-minimal residual method with inexact preconditioning, SIAM J. Sci. Comput VOL. 23,No. 2,pp. 363-380 [3] Griebel Michael, Dornseifer Thomas, Neunhoeffer Tilman. Numerical Simulation in Fluid Dynamics., Society for Industrial and Applied Mathematics, 1998. [4] H. A. van der Vorst,Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,SIAM J.Sci.Statist. Comput., 13(1992),pp. 631-644 [5] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear system , J. Res. Nat. Bur. Standards, 49(1952)pp. 409-435 [6] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear system ,SIAM J.Sci.Statist. Comput.,10(1989),pp.36-52 [7] R.Barrett, et al., Templates for the Solution of Linear Systems: Building Block for Iterative Methods , SIAM, Philadelphia, 1994 [8] R. W. Freund and N. M. Nachtigal, QMR : A quasi-minimal residual method for non-Hermitian linear systems ,Numer. Math., 60(1991),pp.315-339. [9] R. W. Freund and N. M. Nachtigal, QMR : An implementation of the QMR method based on coupled two-term recurrences ,SIAM J. Sci. Statist. Comput.,15(1994),pp.313-337 [10] R.Fletcher, Conjugate gradient methods for indefinite systems ,in Nummerical Analysis Dundee 1975,G. Watson, ed.,Springer-Verlag, Berlin, New York, 1976,pp. 73-89 [11] W.E.ARNOLDI., The principle of minimized iterations in the solution of the matrix eigenvalue problem ,Quart. Appl. Math.,9(1951),pp17-29 [12] Y.Saad and M. H. Schultz, GMRES : A generalized minimal residual algorithm for solving nonsysmmetric linear systems , SIAM J.Sci.Statist. Comput.,7(1986),pp.856-869. [13] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm ,SIAM Journal on Scientific Computing, 14:461-469, 1993 [14] Y. Saad. Iterative Methods for Sparse Linear Systems ,PWS Publishing Co.,Boston, 1996 [15] Yvan Notay. Flexible conjugate gradients,Technical Report GANMN 99-02, Universite Libre de Bruxelles, Service de Metrologie Nucleaire, October 1999
|