跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/11 04:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉仁材
論文名稱:基質中添加二價金屬離子與N-乙醯葡萄糖胺對Absidiacoerulea生產幾丁聚醣之影響
論文名稱(外文):Effects of Supplement of Divalent Ions and N-Acetyl-D-glucosamine in Nutrient Medium on Chitosan Production by Absidia coerulea
指導教授:吳俊毅吳俊毅引用關係
學位類別:碩士
校院名稱:義守大學
系所名稱:生物技術與化學工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:60
中文關鍵詞:幾丁聚醣二價金屬離N-乙醯葡萄糖分子量去乙醯度
外文關鍵詞:ChitosanDivalent ionsN-Acetyl-D-glucosamineMolecular weightThe degree of deacetylation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:662
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自然界中幾丁質/幾丁聚醣的分佈相當廣泛,其蘊藏量非常豐富,大多存在於昆蟲、甲殼類動物及真菌中,僅次於纖維素。幾丁質由N-乙醯葡萄糖胺糖(N-acetyl glucosamine)以 β - 1,4 鍵結而成直鏈狀的高分子多醣聚合物,當去乙醯程度達到40%以上則稱為幾丁聚醣。本研究探討二價金屬離子對微生物(Absidia coerulea CCRC 30897)幾丁聚醣產量之影響。控制組培養基包括 glucose、yeast extract、malt extract 與 peptone,實驗組培養基為控制組培養基中添加不同種類與不同濃度之二價離子與N-乙醯葡萄糖胺。 添加Zn2+及Ni2+等金屬離子會抑制菌體成長,Ca2+、Mg2+及Fe2+均無像Zn2+及Ni2明顯+抑制菌體生長。N-乙醯葡萄糖胺對菌體生長則有明顯助益,其乾菌重約 41.31g/L,為控制組的1.78倍。在幾丁聚醣產量方面以添加 0.001 M Fe2+ 影響最巨,產量為 2.82 g/L。添加 5g/L 的N-乙醯葡萄糖胺則在幾丁聚醣產量方面達到最高值 3.2 g/L 的幾丁聚醣產量,但單位菌體內所含的幾丁聚醣含量則會降低,單位菌體內所含的幾丁聚醣含量也以Fe2+ 影響為最巨,高達 21.42 %,為控制組的 2 倍。添加 Ca2+、Mg2+ 和N-乙醯葡萄糖胺則對菌體內幾丁聚醣含量無相當明顯增加。 在分子量方面,培養液中添加Fe2+,其幾丁聚醣產物分子量為500 KDa;添加Mg2+,分子量可達850 KDa;添加Ca2+,可達1000 KDa。在去乙醯度方面,隨著Fe2+濃度增加,去乙醯度自60﹪(控制組)降低至50﹪,隨著Ca2+濃度增加,去乙醯度自60﹪(控制組)升高至70﹪;Mg2+及N-乙醯葡萄糖胺在去乙醯度的影響則無太大及明顯的上升趨勢,維持在65﹪。
Chitin, a polysaccharide of (1-4)-linked-N-acetyl-β-D-glucosamine residues, is one of the most plentiful, easily obtained, and biological renewable natural polymer, next to cellulose. It is commonly found in the exoskeletons of shellfish and insects and in the cell walls of most fungi. Chitosan is a partially acetylated glucosamine polysaccharide found in the cell wall of some fungi such as the Mucorales strains, but it mainly results from deaceylation of chitin by thermochemical alkaline method. It is a biopolymer with unique properties favorable for a wide variety of industrial and biomedical applications. The objective of this investigation is to study the effects of supplemental divalent ions and the content of N-Acetyl-D-glucosamine in nutrient medium on microbial chitosan fermentation. Several divalent ions and N-Acetyl-D-glucosamine could affect two enzymes which are responsible for chitosan synthesis The effects of ferrous ions, magnesium ions, zinc ions, nickel ions, calcium ions and N-Acetyl-D-glucosamine as individual supplement to the culture medium on the chitosan fermentation are studied. Additions of Zn2+and Ni2+ could inhibit cell growth. However, Ca2+, Mg2+and Fe2+ have no significant effects on the microbial production. N-Acetyl-D-glucosamine has an enhanced influence on the production of biomass (41.31g/L). Addition of Fe2+ could increase the chitosan productivity(2.82g/L). N-Acetyl-D-glucosamine could also promote the chitosan productivity (3.2g/L) as well as increasing cell weight. Addition of Mg2+ has an insignificant increase on the chitosan molecular weight and chitosan content in cell walls. Fe2+ could increase the chitosan content in the cell walls (21%) more than the control
experiment (10.7%), but reduce molecular weight of chitosan in cell walls(500KDa). Molecular weight of chitosan is increasing obviously by adding Ca2+ into the culture medium. N-Acetyl-D-glucosamine has a non-obvious effect on chitosan content in cell walls and molecular weight On the degree of deacetylation, Mg2+ and N-Acetyl-D-glucosamine has no influence. Fe2+ would decrease the degree of deacetylation(from control experiment 60% to 50%) with increasing Fe2+ concentration. Degree of deacetylation from 60﹪control experiment to 70﹪by increasing the Ca2+ concentration. The data shows that there exists the presence of marked differences in chitosan fermentation by using these kinds of supplemental divalent ions into medium.
第一章 緒論 1
1-1 前言 1
1-2 幾丁聚醣的由來 1
1-3 幾丁質/幾丁聚醣來源 2
1-4 幾丁質/幾丁聚醣物化特性 3
1-5 幾丁質/幾丁聚醣萃取方法 4
1-5-1 化學法 5
1-5-2 酵素法 6
1-5-3 微生物醱酵法 6
1-6 幾丁質/幾丁聚醣應用方向 7
1-6-1 醫學應用領域 7
1-6-2 農業應用領域 9
1-6-3 食品加工應用領域 10
1-6-4 紡織工業應用領域 11
1-6-5 生化工業應用領域 12
第二章 文獻回顧 14
2-1 傳統製程與醱酵製程之比較 14
2-2 金屬離子及N-乙醯葡萄糖胺對幾丁聚醣合成酵素之影響 16
2-3 實驗動機與目的 18
第三章 實驗方法及材料 20
3-1 實驗原理 20
3-2 實驗方法 22
3-2-1 醱酵流程 22
3-2-2 菌種來源 23
3-2-3 菌種生長特性 23
3-2-4 菌種保存方法 24
3-2-5 菌體培養方式 24
3-2-6 前培養 26
3-2-7 主培養 27
3-3 實驗儀器 27
3-4 實驗藥品 27
3-5 幾丁聚醣的萃取方法 29
3-6 分析 29
3-6-1 菌體量測定 29
3-6-2 重量平均分子量的測定 31
3-6-3 pH值測定 33
3-6-4 幾丁聚醣產量測定 33
3-6-5 單位菌體內所含的幾丁聚醣量的計算 33
3-6-6 幾丁聚醣去乙醯度測定 33
3-6-7 醋酸及檸檬酸的測定 37
第四章 結果與討論 39
4-1 醱酵時pH值變化之物理意義 39
4-2 金屬離子對菌體醱酵時的生長情形影響 41
4-3 金屬離子對菌體內幾丁聚醣含量之影響 41
4-4 金屬離子對幾丁聚醣分子量大小之影響 43
4-5 金屬離子對幾丁聚醣去乙醯度之影響 47
4-6 N-乙醯葡萄糖胺在菌體生長、分子量大小、產量及去乙醯度高低之 影響 49
第五章 結論 55
第六章 未來展望 56
參考資料 57
Bartnicki-garcia, S., The biochemical cytology of chitin and chitosan synthesis in Fungi, Chitin and Chitosan, Elsevier Science Publishers LTD, England, 1989, 23-35 Chien, Y. H., Fermentation and scale-up for chitosan production, 國立清華大學化學工程研究所碩士論文, 1999 Choi, W. J. and Cabib, E., The use of divalent cations and pH for the determination specific yeast chitin synthetases , Analytical Biochemistry, 1994, 219, 368-372 Crestini, C., Kovac, B. and Giovannozzi-Sermanni,G., Production and isolation of chitosan by submerged and solid-state fermentation from Lentinusedodes , Biotechnology Bioengineering, 1996, 50, 207-210 Davis, L. L. and Bartnicki-Garcia, S., Chitosan synthesis by the tandem action of chitin synthetase and deacetylase from Mucor rouxii , Biochemistry, 1984, 23, 1065-1073 Enger E. D. and Ross F. C., Concepts in biology, The Mcgraw-Hill Companies, 2001, 58-62 Fujo, Y. and Morita, H., Improved glucoamylase production by rhizopus sp. A-l 1 using metal-ion supplemented liquid medium, Journal of Fermentation and Bioengineering, 1996, 82(6), 554-557 Jaworska, M. M. and Szewczyk, K. W., Chitosan from Absidia orchidis Influence of pH of culture medium, Advances in Chitin Science VIII, ROC, 1998, 498-494 Jaworska, M. M. and Konieczna, E., The influence of supplemental components in nutrient medium on chitosan formation by the fungus Absidia orchidis, Applied of Microbiology and Biotechnology, 2001, 56, 220-224
57
Kołodziejska, I., Malesa-Ciećwierz, M., Lerska, A. and Sikorski, Z. E., Properties of chitin deacetylase from crude extracts of mucor rouxii mycelium, Journal of Food Biochemistry, 1999, 23, 45-57 Kuo, S. M., Chang, S. J., Lin, L.C. and Chen, C. J., Evaluating chitosan/β-tricaicium phosphate/poly(methyl methacrylate) cement composites as bone-repairing materials, Journal of Applied Polymer Science, 2003, 89, 3897-3904 McGahren, W. J., Perkinson,G.A., Growich, J.A., Leese, R.A. and Ellestad, G.A., Chitosan by fermentation , Process Biochemistry, 1983, 19,88-90 Mostafa, N.A., Production of acetic acid and glycerol from salted and dried whey in a membrane cell recycle bioreactor, Energy Conversion and Management, 2001, 42, 1133-1142 Nwe, N., Chandrkrachang, S., Stevens, W.F., Maw, T., Tan, T.K., Khor, E. and Wong, S.M., Production of fungal chitosan by solid state and submerged fementation, Carbohydrate Polymers, 2002, 49,35-237 Pochanavanich, P. and Suntornsuk, W., Fungal chitosan production and its characterization, Letters in Applied Microbiology, 2002, 35,17-21. Rane, K. D. and Hoover, D. G., Production of chitosan by fungi, Food Biotechnology, 1993, 7(1), 11-33 Sburlati, A and Cabib, E., Chitin synthetase 2,a presumptive participant in septum formation in saccharomyces cerevisiae, The Journal of Biological Chemistry, 1986, 261(32), 15147-15152 Suntornsuk, W., Pochanavanich, P. and Suntornsuk, L., Fungal chitosan production on food processing by-products, Process Biochemistry, 2002, 37, 727-729
58
Sreenath, H. K., Koegel, R. G., Moldes, A.B., Jeffries, T. W. and Straub R. J., Enzymic saccharification of alfalfa fibre after liquid hot water pretreatment, Process Biochemistry, 1999, 35(1-2), 33-41 Sreenath, H. K., Koegel, R. G., Moldes, A.B., Jeffries, T. W. and Straub, R. J., Ethanol production from alfalfa fiber fractions by saccharification and fermentation, Process Biochemistry, 2001, 36, 1199-1204 Sreenath, H., Moldes A., Koegel, R. and Straub R., Lactic acid production by simultaneous saccharification and fermentation of alfalfa fiber, Journal of Bioscience and Bioengineering, 2001, 92(6), 518-523. Tetsuya, K. and Masao, K., Efficient production of acetic acid from glucose in a mixed culture of zymomonas mobilis and acetobacter sp., Journal of Fermentation and Bioengineering, 1996, 81(1), 42-46. Tokuyasu, K., Ono, H., Mitsutomi, M., Hayashi, K. and Mori, Y., Synthesis of a chitosan tetramer derivative,β-D-GlcNAc-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-(1→4) D-GlcN through a partial N-acetylation reaction by chitin deacetylase, Carbohydrate Research, 2000, 325 ,211-215 Tsigos, I., Martinou, A., Kafetzopulos, D. and Bouriotis, V., chitin deacetylases:new, versatile tools in biotechnology, Biotechnology, 2000, 18, 305-312 李壯源,100%高分子水溶性幾丁聚醣的強效,國際高效率幾丁聚醣研究會著,2003,23-25,日本 李淑璐,幾丁類性質及功能之標準檢驗,幾丁質與幾丁聚醣研討會論文集,2003,31-40,苗栗 徐新興,多醣體在組織工程上之應用研發,幾丁質與幾丁聚醣研討會論文集,2003,75-88,苗栗 梁凱莉譯,Mary K. Campbell 著,普通生物化學,合記圖書出版社, 2001
59
陳美惠,Chtin and Chitosan ,幾丁質/幾丁聚醣專輯,財團法人新竹食品工業研究所出版,2002,8-14
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top