跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 09:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林良錡
研究生(外文):Liang-Chi Lin
論文名稱:高效率碎形影像壓縮之研究
論文名稱(外文):A Study of Efficient Fractal Image Compression
指導教授:王周珍
指導教授(外文):Chou-Chen Wang
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:69
中文關鍵詞:影像壓縮碎形編碼
外文關鍵詞:image codingfractal encoding
相關次數:
  • 被引用被引用:2
  • 點閱點閱:745
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:1
碎形影像壓縮具有解析度獨立、快速解壓縮以及高壓縮率的優點。然而,碎形影像區塊編碼(fractal block coding:FBC)最大的問題在於計算值域方塊(range block)和定義域方塊(domain block)間的距離有非常高的複雜度。為了改善上述的缺點,本論文提出了兩個高效率的方法來改善碎形編碼過程。第一種方法是以餘弦定理(law of cosines:LOC)為基礎的快速碎形影像編碼(FBC-LOC)技術,經實驗模擬的結果,證明我們所提出之FBC-LOC架構可以非常快速且安全的消去不適合的定義域方塊,並保持與FBC相同的影像品質。第二種方法是運用區塊向量轉換(block vector transform:BVT)技術來作為FBC的前端訊號處理單元(BVT-FBC),利用影像經BVT轉換後各頻帶內的係數保有極高關聯性且各頻帶係數間有極低關聯性的特性,來完成更有效率的碎形編碼系統,經實驗證明論文所提之BVT-FBC不僅比傳統的FBC有更快的編碼速度,而且在相同壓縮率下能完成更佳的解碼影像品質。

Fractal image coding (FBC) is a relatively new technique that has attracted much attention due to the advantages of resolution independence, fast decompression and high compression ratio. The major drawback of the fractal image compression is the high encoding complexity to find the best match between a range block and a large pool of domain blocks. In order to improve the drawback of the fractal image compression, two efficient methods are proposed to speed up the fractal encoding process.
The first method proposed is a fast fractal block coding based on the law of cosines (FBC-LOC). The number of domain blocks searched to find the best match for each range block is safely reduced by eliminating the ineligible domain blocks using the law of cosines. Simulation results show that the proposed algorithm can produce a completely identical fractal code to that of the exhaustive search in reduced time.
The second method proposed is to utilize a block vector transform (BVT) technique and employ it as a signal processing unit for fractal block coding (BVT-FBC). It is clear that the BVT is a vector-based signal processing operation which reduces correlation between vectors and leaves correlation between the components of each vector almost unchanged. Experimental results show that the proposed scheme can achieve faster coding and better image quality in the same bit rate than that of FBC.

ABSTRACT
FIGURE CAPTIONS
TABLE CAPTIONS
CHAPTER
1 INTRODUCTION
1.1 Why Needs Image Compression
1.2 Fractal Image Compression
2 FRACTAL IMAGE COMPRESSION
2.1 What Is Fractal Image Compression
2.2 Basic Theory
2.2.1 Local Self-Similarity
2.2.2 Iterated Function Systems
2.2.3 Local Iterated Function System
2.2.4 Resolution Independence
2.3 Implementation
3 FAST FRACTAL ENCODING USING THE LAW OF COSINES
3.1 The Law of Cosines
3.2 Sorted domain Pool via Variance
3.3 Partial Isometry Transform Search
3.4 The Law of Cosines Joint the PITS
3.5 Simulation Results
4 Block Vector Transform for Fractal Image Compression
4.1 Block Vector Transform (BVT)
4.2 BVT-FBC Coding System
4.3 Simulation Results
5 CONCLUSIONS
REFERENCES
APPENDIX

[1] M. F. Barnsley, Fractals Everywhere. New York: Academic, 1988.
[2] M. F. Barnsley, and A. D. Sloan, “A better way to compression images,” BYTE, pp. 215-223, JAN. 1998.
[3] M. F. Barnsley and L. P. Hurd, Fractals Image Compression. San Diego, CA: Academic, 1993.
[4] A. E. Jacquin, “Image coding based on a fractal theory of iterated contractive image transformations,” IEEE Trans. on Image Processing, vol. 1, pp. 18-30, Jan. 1992.
[5] A. E. Jacquin, “Fractal image coding: A review,” Proc. IEEE, vol. 81, pp. 1451-1465, Oct. 1993.
[6] Y. Fisher, “Fractal image compression,” In SIGGRAPH ’92, Fractal Couurse Notes, 1992.
[7] Y. Fisher, Fractal image compression — theory and Applications. Springer-Verlag, New York, 1994.
[8] D. P. Huttenlocher, G. A. Klanderman and W. J. Rucklidge, “comparing images using the Hausdorff distance,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 15, no. 9, pp. 850-863, Sept. 1993.
[9] C. C. Wang and C. H. Hsieh, “An efficient fractal image coding method using interblock correlation search,” IEEE Trans. Circuit and System for Video Technology, vol. 11, no. 1, pp. 257-261, January, 2001.
[10] C. K. Lee and W. K. Lee, “Fast fractal image block coding based on local variances,” IEEE Trans. on Image Processing, vol. 7, pp. 888-891, June 1998.
[11] C. S. Tong and M. Wong, “Adaptive approximate nearest neighbor search for fractal image compression,” IEEE Trans. on Image Processing, vol. 11, pp. 605-615, June 2002.
[12] S. M. Lee and S. W. Ra, “Fast fractal encoding algorithm using variances of image blocks,” Electronics Letters, Vol. 34, No. 10, pp. 971-973, May 1998.
[13] J. Cardinal, “Fast fractal compression of grayscale images,” IEEE Trans. on Image Processing, vol. 10, pp. 159-164, Jan. 2001.
[14] N. N. Ponomarenko, K. Egiazarian, V. V. Lukin and J. T. Astola, “Lossless acceleration of fractal compression using domain and range block local variance analysis,” IEEE International Conference on Image Processing, vol. 2, pp. 419-422, Oct. 2001.
[15] S. M. Lee and S. W. Ra, “An Analysis of Isometry Transforms in Frequency Domain for Fast Fractal Encoding,” IEEE Signal Processing Letters, vol. 6, no. 5, May 1999.
[16] Y. Zhao and B. Yuan, “A hybrid image compression scheme combining block-based fractal coding and DCT,” Image commun., vol. 8, pp. 73-78, Mar. 1996.
[17] W. B. Pennebacker and J. L. Mitchell, JPEG Still Image Compression Standard, New York: Van Nostrand, 1993.
[18] C. Christopoulos, “JPEG 2000 Verification Model 3.0(b),” ISO/IEC JTC1/SC29/WG1 N1135, Dec. 1998.
[19] W. Li, “On vector transformation,” IEEE Trans., Signal Proc., vol. 41, no. 11, pp. 3114-3126, Nov. 1993.
[20] W. Li and Y. Q. Zhang, “Vector-Based Signal Processing and Quantization for Image and Video Compression,” Proc. IEEE, vol. 83 pp. 317-333, Feb. 1995.
[21] J. Mielikainen, “A Novel Full-search Vector Quantization Algorithm Based on the Law of Consines,” IEEE SIGNAL PROCESSING LETTERS, vol. 9, no. 6, JUNE 2002.
[22] G.. Waillance, “The JPEG still picture compression standard.” Communication of ACM, vol. 34, no. 4, pp. 30-44. April 1991.
[23] D.LeGall, “MPEG: A video compression standard for multimedia application,” Compressions of ACM, vol. 34, no. 4, pp. 46-58, Apr. 1991.
[24] “Generic coding of moving pictures and associated audio (MPEG-2),” ISO/IEC CD 13818 Inf. Tech, Nov. 1993.
[25] CCITT Rec. H.261, “Video codec for audiovisual services at p 64Kbits/s,” CDM XV-R37-E, 1990.
[26] M. W. Whybray, W. Ellis, “H.263: Video coding recommendation for PSTN videophone and multimedia,” IEE Colloquium on Low Bit Image Coding, Digest No. 1995/154.
[27] L. Edwards, Elementary linear algebra. Houghton Mifflin, Boston, MA, 2000.
[28] K. R. Rao and P. Tip, “Discrete Cosine Transform,” Academic, New York, 1990.
[29] “JPEG 2000 IMAGE CODING SYSTEM,” ISO/IEC FCD15444-1:2000 V1.0, Mar. 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top