跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 20:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱佩詩
研究生(外文):Pei-Shih Chiu
論文名稱:不同瓷牙鑲面設計之熱應力分析─有限元素法
論文名稱(外文):Thermal Stress Analysis of Different Designs of Porcelain Laminate Veneer — Finite Element Method
指導教授:王兆祥
指導教授(外文):Chau-Hsiang Wang
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:牙醫學研究所碩士班
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:94
中文關鍵詞:熱應力瓷牙鑲面三維有限元素法
外文關鍵詞:porcelain laminate veneerfinite element methodthermal stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
臨床上以瓷牙鑲面方式復形日漸普遍。回顧臨床觀察文獻1到10年的瓷牙鑲面的失敗率在3到42%,常見的失敗情形為瓷牙鑲面的破裂、微裂隙及脫落。機械力對瓷牙鑲面的探討文獻豐富,熱應力的影響之文獻則極少。本研究以三維有限元素法探討溫度變化對於三種瓷牙鑲面切端設計的影響,並以電阻應變計實驗做有效性印證。建立三種不同瓷牙鑲面設計〔羽毛形(feather)、弧形(chamfer)、方形(buttjoint)〕之上顎正中門牙的三維實體模型。施予模擬攝氏67及7度之飲食溫度。熱傳導分析發現熱傳導時間10秒鐘足夠複合體熱充分傳遞,熱傳導模式由瓷牙鑲面往牙髓方向依序內傳遞,樹脂黏合劑的切端兩側溫度變化量最大溫度上升和下降時,有相似的熱傳導模式。此外三種切端修形方式之熱傳導模式也相似。溫度變化的確對瓷牙鑲面-樹脂黏合劑-齒質複合體造成熱應力,溫度上升和下降時,熱應力分布相似,三種切端修形方式之熱應力分布相似。瓷牙鑲面之最大張應力出現在舌側面齒頸部區域,樹脂黏合劑層的剪應力出現在唇側面齒頸部。單次溫度變化(最大值為0.128MPa)對瓷牙鑲面造成的張應力沒有超過破裂的臨界值,長期反覆則預期會產生疲勞現象。關鍵詞:瓷牙鑲面、三維有限元素法、熱應力
In recent years, the porcelain laminate veneer had become a more popular application. However, fracture, microleakage and debonded of the porcelain laminate veneer are still the critical problems that usually affect the success rate of it. Cyclic thermal fatigue and function has demonstrated a significant influence of the luting composite and ceramic in crack propensity of porcelain laminate veneers (PLV). The purpose of this study was to define the potential parameters associated with the development of cracks in PLV. Finite element method (FEM) was used for the thermal stress analysis of the porcelain-luting composite-tooth complex during the thermal variations of ingesting food and drinks. The thermal loading conditions were assessed 67°C (30° positive loading) and 7 °C (30° negative loading) on the exterior nodes coronal to the cementoenamel junction. Temperature gradients and distributions of three PLV designs did not show any significant difference. The thermal change did induce an internal stress in the porcelain-luting composite-tooth complex. The maximal principal stress were concentrated at cervical margin of the veneer-cement interface. The maximum shear stress of the cement was concentrated at cervical margin of the veneer-cement interface.
第一章緒論……………………………………………………………1
第一節研究背景…………………………………………….....1
第二章文獻回顧………………………………………………………5
第一節前牙區的復形與瓷牙鑲面的發展…………………....5
第二節瓷牙鑲面的臨床評估重點及預後…………………....6
第三節黏著複合體:牙齒/樹脂黏合劑/陶瓷………………….7
第四節應力及熱應力分析對於贗復物的重要性……….…..18
第五節瓷牙鑲面臨床應用的考量……………………….…..22
第六節文獻回顧總結………………………………….……..23
第七節研究動機及目的……………………………….……..24
第三章材料與方法……………………………………………………25
第一節蒐集上顎正中門牙……………………………………25
第二節包埋上顎正中門牙………………….………………..26
第三節製作上顎正中門牙瓷牙鑲面……………….………..26
第四節電阻應變計的黏貼…………………………………...26
第五節施與溫度變化及記錄………………………………...27
第六節牙齒包埋切片………………………………….……..27
第七節切片之影像處理………….…………………………..27
第八節有限元素模型建立……………….…………………..28
第九節模型有效性測試……………………….……………..28
第十節初步實驗………………………………………………29
第十一節三種切端設計的熱傳導及熱應力分析……………30
第四章結果……………………………………………………………31
第一節有效性驗證結果……………………………………...31
第二節初步實驗結果……………………….………………..31
第三節有限元素分析熱傳遞結果…………..………………32
第四節有限元素分析熱應力結果…………………………..33
第五節有限元素法分析樹脂黏合劑層之剪應力結果……..35
第五章討論……………………………………………………….…36
第一節有限元素法………………………………………….……36
第二節建立標準模型………………………………………..…..37
第三節有限元素模型的建立..…………………………………..38
第四節施予溫度差、部位、時間與熱應力之邊界條件的設定…39
第五節有效性驗證數值的探討………………………………….41
第六節熱傳遞時間之探討……………………………………….42
第七節熱傳遞之探討…………………………………………....42
第八節不同修形方式瓷牙鑲面之熱應力探討……………..…..43
第九節溫度上升及下降之間………………..…………………..45
第十節結合應力及熱應力之綜合考量………………….……..46
第十一節臨床應用的考量……………………………………….48
第六章結論與未來展望……………………………………………...50
參考文獻……………………………………………………………….52
表格…………………………………………………………………….60
圖形…………………………………………………………………….63
1 Sarikaya M. An introduction to biomimetics: A structural viewpoint. Microsc Res Tech 1994;27:360-75.
2. Magne P, Belser U. Bonded porcelain restorations in the anterior dentition: a biomimetic approach. p133, Germany, Quintessence Publishing Co., Inc., 2002.
3. 林政義、郭棟梁、林醒余。瓷片鑲面。牙醫學雜誌1995;15(4):200-5。
4. Castelnuovo J, Tjan AH, Phillips K, Nicholls JI, Kois JC. Fracture load and mode of failure of ceramic veneers with different preparations. The Journal of Prosthetic Dentistry 2000;83(2):171-80.
5. Pincus CR. Building mouth personality. Journal of South California Dental Association 1938;14:125-9.
6. Horn HR. A new lamination: porcelain bonded to enamel. New York State Dental Journal 1983;49(6):401-3.
7. Simon RJ, Calamia JR. Tensile bond strength of etched porcelain. Journal of Dental Research 1983;62:297.
8. Walls AW, Murray JJ, McCabe JF. Composite laminate veneers: a clinical study. Journal of Oral Rehabilitation 1988;15(5):439-54.
9. Calamia JR. Clinical evaluation of etched porcelain veneers. American Journal of Dentistry 1989;2(1):9-15.
10. Jordan RE, Suzuki M, Senda A. Clinical evaluation of porcelain laminate veneers: a four-year recall report. Journal of Esthetic Dentistry 1989;1(4):126-37.
11. Rucker LM, Richter W, MacEntee M, Richardson A. Porcelain and resin veneers clinically evaluated: 2-year results. Journal of the American Dental Association1990;121(5):594-6.
12. Christensen GJ, Christensen RP. Clinical observations of porcelain veneers: a three-year report. Journal of Esthetic Dentistry 1991;3(5):174-9.
13. Karlsson S, Landahl I, Stegersjo G, Milleding P. A clinical evaluation of ceramic laminate veneers. International Journal of Prosthodontics 1992;5(5):447-51.
14. Jäger K, Stern M, Wirz J. Laminate-reif fur die Präxis. Quintessenz 1995;46:1221-30.
15. Strassler HE, Nathanson D. Clinical evaluation of etched porcelain veneers over a period of 18 to 42 months. Journal of Esthetic Dentistry1989;1(1):21-8.
16. Walls AW. The use of adhesively retained all-porcelain veneers during the management of fractured and worn anterior teeth: Part 2. Clinical results after 5 years of follow-up. British Dental Journal 1995;178(9):337-40.
52
17. Stressler HE, Weiner S. Seven to ten year clinical evaluation of etched porcelain veneers. Journal of Dental Research 1995;74:176.
18. Shaini FJ, Shortall AC, Marquis PM. Clinical performance of porcelain laminate veneers. A retrospective evaluation over a period of 6.5 years. Journal of Oral Rehabilitation1997;24(8):553-9.
19. Peumans M, Van Meerbeek B, Lambrechts P, Vuylsteke-Wauters M, Vanherle G. Five-year clinical performance of porcelain veneers. Quintessence International 1998;29(4):211-21.
20. Kihn PW, Barnes DM. The clinical longevity of porcelain veneers: a 48-month clinical evaluation. Journal of the American Dental Association 1998;129(6):747-52.
21. Fradeani M. Six-year follow-up with Empress veneers. International Journal of Periodontics & Restorative Dentistry 1998;18(3):216-25.
22. Meijering AC, Creugers NH, Roeters FJ, Mulder J. Survival of three types of veneer restorations in a clinical trial: a 2.5-year interim evaluation. Journal of Dentistry1998;26(7):563-8.
23. Dumfahrt H, Schaffer H. Porcelain laminate veneers. A retrospective evaluation after 1 to 10 years of service: Part II--Clinical results. International Journal of Prosthodontics 2000;13(1):9-18.
24. Reid JS, Murray MC, Power SM. Porcelain veneers- a four year follow-up. Restorative Dentistry 1998;5:42-55
25. Alan V. Sulikowski, Aki Yoshida. Clinical and laboratory protocol for porcelain laminate restorations on anterior teeth. Quintessence of Dental Technology 2001;24:8-22.
26. Clyde JS, Gilmour A. Porcelain veneers: a preliminary review. British Dental Journal 1988;164(1):9-14.
27. Christensen GJ. Have porcelain veneers arrived? Journal of the American Dental Association 1991;122(1):81.
28. Olgart L, Brannstrom M, Johnson G. Invasion of bacteria into dentinal tubules. Experiments in vivo and in vitro. Acta Odontologica Scandinavica 1974;32(1):61-70.
29. Calamia JR. Etched porcelain veneers: the current state of the art. Quintessence International 1985;16(1):5-12.
30. Quinn F, McConnell RJ, Byrne D. Porcelain laminates: a review. British Dental Journal 1986;161(2):61-5.
31. Peumans M, Van Meerbeek B, Lambrechts P, Vanherle G. Porcelain veneers: a review of the literature. Journal of Dentistry 2000;28(3):163-77.
53
32. McLaughlin G, Morrison JE. Porcelain fused to tooth--the state of the art. Restorative Dentistry 1988;4(4):90-4.
33. Nattress BR, Youngson CC, Patterson CJ, Martin DM, Ralph JP. An in vitro assessment of tooth preparation for porcelain veneer restorations. Journal of Dentistry 1995;23(3):165-70.
34. Gilmour AS, Stone DC. Porcelain laminate veneers: a clinical success. Dental Update 1993;20(4):167-9, 171-3.
35. Cherukara GP, Seymour KG, Samarawickrama DY, Zou L. A study into the variations in the labial reduction of teeth prepared to receive porcelain veneers--a comparison of three clinical techniques. British Dental Journal 2002;192(7):401-4.
36. Ferrari M, Patroni S, Balleri P. Measurement of enamel thickness in relation to reduction for etched laminate veneers. International Journal of Periodontics & Restorative Dentistry 1992;12(5):407-13.
37. Schwartz JC. Vertical shoulder preparation design for porcelain laminate veneer restorations. Practical Periodontics & Aesthetic Dentistry 2000;12(5):517-24; quiz 526.
38. Magne P, Douglas WH. Interdental design of porcelain veneers in the presence of composite fillings: finite element analysis of composite shrinkage and thermal stresses. International Journal of Prosthodontics 2000;13(2):117-24.
39. Garber DA. Porcelain laminate veneers--to prepare or not to prepare? Compendium 1991;12(3):178, 180-2.
40. Schneider PM, Messer LB, Douglas WH. The effect of enamel surface reduction in vitro on the bonding of composite resin to permanent human enamel. Journal of Dental Research 1981;60(5):895-900.
41. Clyde JS, Gilmour A. Porcelain veneers: a preliminary review. [Review] [15 refs] British Dental Journal 1988;164(1):9-14.
42. Weinberg LA. Tooth preparation for porcelain laminates. New York State Dental Journal 1989;55(5):25-8.
43. Gerlach KL, Nubaum P. An electric method for determination of lower jaw loadability in patients. Deutsche Zahnärztliche Zeitung 1984;39:146.
44. Wall JG, Reisbick MH, Johnston WM. Incisal-edge strength of porcelain laminate veneers restoring mandibular incisors. International Journal of Prosthodontics 1992;5(5):441-6.
45. Hui KK, Williams B, Davis EH, Holt RD. A comparative assessment of the strengths of porcelain veneers for incisor teeth dependent on their design characteristics. British Dental Journal 1991;171(2):51-5.
54
46. Peyton FA. Restorative Dental Materials. 3rd ed. St Louis: CV Mosby Co;1968. p.79.
47. Hahn P, Gustav M, Hellwig E. An in vitro assessment of the strength of porcelain veneers dependent on tooth preparation. Journal of Oral Rehabilitation 2000;27(12):1024-9.
48. 黃筱娟。不同瓷牙鑲面設計受力時之應力分析-有限元素法(碩士論文)。高雄:高雄醫學大學口腔醫學院牙醫學研究所;2003。
49. Magne P, Kwon KR, Belser UC, Hodges JS, Douglas WH. Crack propensity of porcelain laminate veneers: A simulated operatory evaluation. The Journal of Prosthetic Dentistry 1999;81(3):327-34.
50. Highton R, Caputo AA, Matyas J. A photoelastic study of stresses on porcelain laminate preparations. The Journal of Prosthetic Dentistry 1987;58(2):157-61.
51. Brunton PA, Wilson NH. Preparations for porcelain laminate veneers in general dental practice.[comment]. British Dental Journal 1998;184(11):553-6.
52. Garber DA. Rational tooth preparation for porcelain laminate veneers. Compendium 1991;12(5):316, 318, 320 passim.
53. Nordbo H, Rygh-Thoresen N, Henaug T. Clinical performance of porcelain laminate veneers without incisal overlapping: 3-year results. Journal of Dentistry 1994;22(6):342-5.
54. Markus B. Blatz, Avishani Sadan, Matthias Kern. Resin-ceramic bonding: A Review of the literature. The Journal of Prosthetic Dentistry 2003;89:264-74.
55. Yen TW, Blackmann RB, Baez RJ. Effect of acid etching on the flexural strength of a feldspathic porcelain and a castable glass ceramic. The Journal of Prosthetic Dentistry 1993;70:224-33.
56. Calamia JR, Vaidyanathan J, Vaidyanathan TK, et al. Shear bond strength of etched porcelains. Journal of dental research 1985;64:828. Abstract1096.
57. Strang R, McCrosson J, Muirhead GM, et al. The setting of visible light-cured resins beneath etched porcelain veneers. British dental journal 1987;163:149-51.
58. Linden JJ, Swift EJ, Boyer DB, et al. Photo-activation of resin cements through porcelain veneers. Journal of Dental Research 1991;70:154-7.
59. Inokoshi S, Willems G, Van Meerbeek B, et al. Dual-cure luting composites. Part I: filler particle distribution. Journal of Oral Rehabilitation 1993;20:133-46.
60. Michael Troedson, Tore Derand. Effect of margin design, cement polymerization, and angle of loading on stress in porcelain veneers. The Journal of Prosthetic Dentistry 1999;82:518-24.
55
61. Fouad K. Wahab, Firas J. Shaini, Steven M. Morgano. The effect of thermocycling on microleakage of several commercially available composite Class V restorations in vitro. The Journal of Prosthetic Dentistry 2003;90:168-74.
62. Koike T, Hasegawa T, Manabe A, Itoh K, Wakumoto S. Effect of water sorption and thermal stress on cavity adaptation of dental composites. Dental Materials 1990;6:178-80.
63. Molin MK, Karlsson SL, Kristiansen MS. Influence of film thickness on joint bend strength of a ceramic/resin composite joint. Dental Materials 1996;12(4):245-9.
64. Darja Alster, Albert J. Feilzer, Anton J. De Gee, Carel L. Davidson. Polymerization contraction stress in thin resin composite layers as a function of layer thickness. Dental Materials 1997;13:146-50.
65. Pashley DH. Resin-dentin interfeces created by conventional and simplified self-or total-etch adhesives are all porous. American association for dental research. Abstracts 1202, 2003
66. Vaidyanathan TK, Vaidyanathan J, Microleakage and adhesive-dentine interface morpfology of self- etch dentin bonding systems. American association for dental research. Abstracts 0926, 2003
67. White SN, Zhao XY, Zhaokun Y, Li ZC. Cyclic mechanical fatigue of a feldspathic dental porcelain. International Journal of Prosthodontics 1995;8(5):413-20.
68. Giuseppe Isgro, BmedSci, Prem Pallav, Jef M. van der Zel, Albert J. Feilzer. The influence of the veneering porcelain and different surface treatments on the biaxial flexural strength of a heat-pressed ceramic. The Journal of Prosthetic Dentistry 2003;90:465-73.
69. el-Sherif M, Jacobi R. The ceramic reverse three-quarter crown for anterior teeth: preparation design. The Journal of Prosthetic Dentistry 1989;61(1):4-6.
70. Jacobi R, Shillingburg HT Jr, Duncanson MG Jr. Effect of abutment mobility, site, and angle of impact on retention of fixed partial dentures. The Journal of Prosthetic Dentistry 1985;54(2):178-83.
71. Toparli M, Sasaki S. Finite element analysis of the temperature and thermal stress in a postrestored tooth. Journal of Oral Rehabilitation 2003;30:921-6.
72. Palmer DS, Barco MT Billy EG. Temperatures produced orally by hot and cold liquids. The Journal Prosthetic Dentistry 1992;67:325-7
73. Fenner DN, Robinson PB, Cheung PM Y, Three dimensional finite element analysis of thermal shock in a premolar with a composite resin MOD restoration. Medical Engineering and Physics 1998;20:296.
56
74. Lilley H, Seghi RR Microtensile bone strengths of the one-step and conventional bonding agents. American association for dental research. Abstracts 0561, 2003
75. Andreasen FM, Flugge E, Daugaard-Jensen J, Munksgaard EC. Treatment of crown fractured incisors with laminate veneer restorations. An experimental study. [Journal Article] Endodontics & Dental Traumatology 1992;8(1):30-5.
76. Pascal M, Antheunis V, Douglas WH. Effect of luting composite shrinkage and thermal loads on the stress distribution in porcelain laminate veneers. The Journal of Prosthetic Dentistry 1999; 81 335-44.
77. Hahn P, Attin T, Grofke M, Hellwig E. Influence of resin cement viscosity on microleakage of ceramic inlays. Dental material 2001;17:191-6.
78. Walls AW. The use of adhesively retained all-porcelain veneers during the management of fractured and worn anterior teeth: Part 1. Clinical technique. British Dental Journal 1995;178(9):333-6.
79. Lee HE, Lin CL, Wang CH, Cheng CH, Chang CH. Stress at the cervical lesion of maxillary premolar-a finite element investigation. Journal of Dentistry 2002;30(7-8):283-90.
80. Spierings D, Peters T, Bosman F, Plasschaert F. Verification of theoretical modeling of heat transmission in teeth by in vivo experiments. Journal Dental Research 1987;66(8):1336-9.
81. Spierings D, de Vree JHP, Peters T, Plasschaert F. The influence of restorative dental materials on heat transmission in human teeth. Journal Dental Research 1984;63(8):1096-100.
82. Spierings D, Peters T, Bosman F, Plasschaert F. The influence of cavity geometry on heat transmission in restored teeth. Journal Dentistry 1986;14:47-51.
83. de Vree JHP, Spierings D, Plasschaert F. A simulation model for transient thermal analysis of restored teeth. Journal Dental Research 1983;62(6):756-9.
84. Spierings D, Bosman F, Peters T, Plasschaert F. Determination of the convective heat transfer coefficient. Dental Materials 1987;3:161-4.
85. Toparli M. Stress analysis in a post-restored tooth utilizing the finite element method. Journal of Oral Rehabilitation 2003;30:470.
86. Toparli M, Aykul H, Sasaki S. Temperature and thermal stress analysis of a crowned maxillary second premolar tooth using three- dimensional finite element method. Journal of Oral Rehabilitation 2003;30:99.
87. Toparli M, Gokay N, Aksoy T. An investigation of temperature and stress distribution on a restored maxillary second premolar tooth using three- dimensional finite element method. Journal of oral Rehabilitation 2000;27:1077.
57
88. Goel VK, Khera SC, Ralston JL, Chang KH. Stresses at the dentinoenamel junction of human teeth- a finite element investigation.[comment]. Journal of Prosthetic Dentistry 1991;66(4):451-9.
89. Goel VK, Khera SC, Gurusami S, Chen RC. Effect of cavity depth on stresses in a restored tooth. Journal of Prosthetic Dentistry 1992;67(2):174-83.
90. Lin CL, Chang CH, Cheng CS, Wang CH, Lee HE. Automatic finite element mash generation for maxillary second premolar. Computer Methods & Programs in Biomedicine 1999;59(3):187-95.
91. Lin CL, Chang CH, Wang CH, Ko CC, Lee HE. Numerical investigation of the factors affecting interfacial stresses in an MOD restored tooth by auto-meshed finite element method. Journal of Oral Rehabilitation 2001;28(6):517-25.
92. Lin CL, Chang CH, Ko CC. Multifactorial analysis of an MOD restored human premolar using auto-mesh finite element approach. Journal of Oral Rehabilitation 2001;28(6):576-85.
93. Seymour KG, Cherukara GP, Samarawickrama DY. Stresses within porcelain veneers and the composite lute using different preparation designs. Journal of Prosthodontics 2001;10(1):16-21.
94. Gurusami SA. Stress in human teeth-an application of the finite element technique. Master’s Thesis. Iowa City, Iowa: University of Iowa Graduate College, 1985.
95. Hong-So Yang, Lisa A. Lang, Albert D Guckes, David A. Felton. The effect of thermal change on various dowel-and-core restorative materials. The Journal of Prosthetic Dentistry 2001;86:74-80.
96. Arola D, Huang MP. The influence of simultaneous mechanical and thermal loads on the stress distributions in molars with amalgam restoration. Journal of Materials Science: Materials in Medicine 2000;11:133.
97. Robert G. Restorative Dental Materials. 10th ed. USA: CV Mosby;1997. p70.
98. Shaini FJ, Shortall AC, Marquis PM. Clinical performance of porcelain laminate veneers. A retrospective evaluation over a period of 6.5 years. Journal of Oral Rehabilitation 1997;24(8):553-9.
99. Nordbo H, Rygh-Thoresen N, Henaug T. Clinical performance of porcelain laminate veneers without incisal overlapping: 3-year results. Journal of Dentistry 1994;22(6):342-5.
100. Zaimoglu A, Karaagaclioglu L. Microleakage in porcelain laminate veneers. Journal of Dentistry 1991;19(6):369-72.
101. Garber DA, Goldstein RE, Feinman RA. Porcelain laminate veneers. USA: Quintessence Publishing Co, Inc; 1988. p.97~8.
58
102. Photini Kamosiora, George Papavasilious, Stephen C. Bayne, David A. Felton. Finite element analysisestimates of cement microfracture under complete veneer crowns. The Journal of Prosthetic Dentistry 1994;71:435-41.
103. Biomaterials Properties Database, University of Michigan. http://www.lib.umich.edu/dentlib/Dental_tables/toc.html
104. Lloyd B.A., McGinley M.B., Brown W.S. Thermal stress in teeth. Journal Dental Research 1978;57(4):571-82.
105. Hekimoglu C., Anil N., Yalcin E. A microleakage study of ceramic laminate veneers by autoradiography: effect of incisal edge preparation. Journal of Oral Rehabilitation 2004;31:265-70.
106. Dubois RJ, Kyriakakis P, Weiner S, Vaidyanathan TK. Effects of occlusal loading and thermocycling on the marginal gaps of light-polymerized and autopolymerized resin provisional crowns. The Journal of Prosthetic Dentistry 1999;82:161-6.
107. Tjan AH, Dunn JR, Sanderson IR. Microleakage patterns of porcelain and castable ceramic laminate veneers. Journal of Prosthetic Denstry 1989;61:276-82.
108. Stewart GP, Jain P, Hodges J. Shear bond strength of resin cements to both ceramic and dentin. The Journal of Prosthetic Dentistry 2002; 88:277-84.
109. Leinfelder KF. Clinical applications of composite resin luting agents. Compendium 1998;19:1168-75.
110. Madani M, Chu FCS, McDonald AV, Smales RJ. Effects of surface treatments on shear bond strengths between a resin cement and an alumina core. The Journal of Prosthetic Dentistry 2000;83:644-7.
111. Perez NM, Bassiouny MA, Carrel R. In vitro microleakage of the laminate veneer system. Acta Odont Pediat 1980;1:77-82.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top