跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/06 19:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高維欣
研究生(外文):Kao Wei Xin
論文名稱:電化學方法製備釕氧化物電極與其特性之探討
論文名稱(外文):Studies on the Deposition and Characteristics of Ruthenium Oxide by Electrochemical Methods
指導教授:卓錦江卓錦江引用關係
指導教授(外文):J.J. Jow
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:115
中文關鍵詞:釕氧化物循環伏安法旋轉電極阻抗分析
外文關鍵詞:Ruthenium oxidesCyclic voltammetric (CV) methodsImpedanceEquivalent series resistance (ESR)
相關次數:
  • 被引用被引用:5
  • 點閱點閱:873
  • 評分評分:
  • 下載下載:97
  • 收藏至我的研究室書目清單書目收藏:2
研究利用電化學方法在鈦基材上沉積氧化物,以製備超高電容電極,主要是探討電化學沉積反應機制與釕氧化物儲電特性。實驗內容包括,利用CV法分別在-0.2~1.1V及0.7~1.1V電位範圍沉積及定電位法沉積釕氧化物,並對鍍層結構作分析探討,包含SEM和XPS測試,以及電極於H2SO4電解液中之阻抗分析.
實驗結果顯示,在RuCl3.3H2O和HCl水溶液中,以循環伏安法在水分解的電位範圍間(-0.2~1.1V vs. SCE)沉積釕氧化物時,電極電位大於0.7V vs. SCE以上時產生氧化反應,而當電位小於0.5V時則產生還原反應.電極表面RuOx沉積主要由氧化反應產生,還原反應無明顯釕氧化物沉積現象發生。CV法循環過程,還原反應使得電極上沉積層較為堅固.
利用Ru(III)離子在旋轉電極上還原反應的極限電流求得其擴散係數(D),D值範圍為1.05*10-5至2.56*10-6cm2/sec.,其值隨電解液pH值.Ru(III)離子濃度及電解液靜置時間增加而減小,電解液中的KCl的濃度大小對擴散係數則無明顯影響,顯示溶液中,Ru(III)離子形成較大的膠體粒子,反應主要影響因素為溶液pH值.Ru(III)離子濃度及靜置時間.溶液在靜置24小時後擴散係數比新配溶液擴散係數減小25~40%,靜置144小時後約減小30~60%,並漸漸達一穩定值,即約一周後生成穩定膠體溶液.
由釕氧化物沉積之CV測試及XPS分析顯示,陰極還原沉積會使釕氧化物沉積層含較多Ru-O-Ru的結構,結晶水含量降低,鍍層較穩定但氧化還原反應較不可逆;而陽極氧化反應恰好相反,會使鍍層中結晶水含量增加,且含較少Ru-O-Ru的結構,造成鍍層不穩定易溶解,但氧化還原反應可逆性較佳.SEM分析顯示以陰極還原沉積之鍍層表面結構平整,而以CV法沉積之鍍層表面結構有龜裂之現象,顯示沉積層在不斷的氧化還原過程中,體積膨脹收縮會造成表面結構之破裂.
阻抗(Impedance)測試分析結顯示,電化學沉積之釕氧化物電極經熱處理,當熱處理溫度大於200℃時阻抗會因燒結會形成釕氧化物的結晶相,使電極電阻減小.以CV法(-0.2~1.1V)沉積之釕氧化物鍍層,在高電位時法拉第電阻(Rct)較小,在低電位時Rct較大,即其氧化還原可逆性在高電位時較在低電位時佳;而以陰極還原沉積之釕氧化物其Rct在各電極電位無明顯變化,即其氧化還原可逆性在各電極電位下無明顯差異。釕氧化物電極電容器在H2SO4濃度的電解液中,其等效串聯電阻(ESR)隨著電解液H2SO4濃度增加而降低,而當H2SO4濃度大於4M時,則隨H2SO4濃度增加而增加,約在4M時其ESR值最小。
Abstracts
The growth of Ruthenium oxides on Ti substrates in RuCl3.3H2O and HCl aqueous solution by cyclic voltammetric (CV) methods and constant potential deposition are studied in this work. Rotating electrode technology, SEM,XPS and EIS measurements are performed to investigate the growth mechanisms and the properties of ruthenium oxide deposition.
The results of rotating electrode study show that the CV deposition of Ruthenium oxides via anodic and cathodic cycling in the potential range of —0.2 to 1.1 V vs. SCE are mainly contributed by the anodic oxidation of Ru(III) ions, while that via the cathodic reduction of Ru(III) ions are not apparent. The limiting current of the cathodic polarization behaviors on the rotating electrode is in accordance with the Levich’s equation and the diffusivity (D) values of Ru(III) ions calculated accordingly are in the range 1.05*10-5 to 2.56*10-6cm2/sec. D values decrease with the increase of the pH, RuCl3 concentration and aging time of the solution, about 25-40% and 30- 60% decrease of the D values are found after 24 and 144 hours storage of the solution respectively.
The results of XPS analysis show that the ruthenium oxides via cathodic reactions lead to higher Ru-O-Ru and lower H2O composition, and a more stable structure than that via anodic reactions. The SEM photographs show crack phenomena appears in the deposits via CV deposition, while smooth deposits are obtained via cathodic deposition.
The EIS study shows that The impedance of RuOx electrode decreases apparently after annealing at temperature higher than 200℃ due to the crystallization of the deposition. The redox reversibility of CV deposited RuOx electrode is better at higher electrode potential( e.g. 1.0 V vs. SCE) than that at lower electrode potential(e.g. 0V vs. SCE), while that are about equal in the potential range 0 - 1.0 V for cathodically prepared RuOx electrodes. It indicates the properties of ruthenium oxide electrodes are significantly dependent on the electrochemical deposition conditions. The optimum H2SO4 concentration for minimum equivalent series resistance (ESR) for RuOx electrochemical capacitor obtained is 4M.
中文摘要 --------------------------------------------- i
英文摘要 ------------------------------------------ iii
誌謝 --------------------------------------------- v
目錄 --------------------------------------------- vi
表目錄 --------------------------------------------- ix
圖目錄 --------------------------------------------- x
第一章 緒論----------------------------------------- 1
1-1 電化學電容器簡介---------------------------- 1
1-1-1 電化學電容器的沿革與應用----------- 1
1-1-2 電化學電容器的儲能機構-------------- 3
1-2 超高電容器電極材料種類--------------------- 6
1-2-1 碳系材料---------------------------- 8
1-2-2 導電性高分子材料-------------------- 11
1-2-3 金屬化合物材料---------------------- 13
1-3 超高電容器電極製備方法--------------------- 14
1-3-1 活性碳複合電極的製備---------------- 14
1-3-2 導電性高分子電極製備---------------- 16
1-3-3 金屬氧化物電極的製備---------------- 16
1-4 影響電極儲電特性的因素---------------------- 18
1-5 阻抗頻譜分析--------------------------------- 20
1-5-1 EIS理論----------------------------- 20
1-5-2 常見電容器電極之等效電路模式------- 21
1-6 研究動機------------------------------------- 29
第二章 實驗方法與步驟------------------------------ 31
2-1 電極製作------------------------------------- 31
2-1-1 電極基材前處理--------------------- 31
2-1-2 旋轉電極之電極基材製備-------------- 31
2-1-3 鍍浴組成---------------------------- 31
2-2 電化學測試-------------------------- 32
2-2-1 電化學沉積測試-------------------- 32
2-2-2 可逆性及電極老化測試------------------ 32
2-2-3 阻抗分析----------------------------------- 33
2-2-4 鍍層分析----------------------------------- 33
2-3 使用儀器及藥品------------------------------- 34
第三章 釕氧化物在旋轉電極上之沉積行為及Ru(III)在電解液中擴散 係數的探討------------------- 36
3-1 瞬時改變旋轉電極轉速對循環伏安法沉積釕氧化物沉積之 影 響------------------------------- 36
3-1-1 瞬時改變旋轉電極轉速對I-V曲線之影響---------- 36
3-1-2 瞬時改變旋轉電極轉速對沉積速率之影響--------- 37
3-2 Ru(III)離子陰極還原之極化曲線---------------- 44
3-2-1 Ru(III)於電解液中之擴散係數------------ 44
3-2-2 鍍液pH值、靜置時間及電解質濃度對擴散係數的影響---46
第四章 循環伏安法及定電位法製備釕氧化物電極及其電化學特性探討------------------------------- 56
4-1 循環伏安法製備釕氧化物電極---------------- 56
4-1-1 不同循環電位範圍下沉積之I-V 關係 56
4-1-2 循環電位範圍對鍍層特性之影響------ 59
4-2 定電位沉積釕氧化物電極---------------------- 71
4-2-1 不同電位下之I-t曲線及鍍層儲電特性 71
4-2-2 沉積電位對釕氧化物鍍層特性之影響- 75
第五章 電化學沉積釕氧化物電極之阻抗特性-------- 84
5-1 循環伏安法與定電位陰極還原沉積之釕氧化物電極阻抗特性分析----------------------------- 84
5-2 熱處理溫度對釕氧化物電極阻抗之影響------ 92
5-3 硫酸電解液濃度對釕氧化物電極電容器ESR的影響-- 95
第六章 總結----------------------------------------- 99
參考文獻 --------------------------------------------- 102
附錄 --------------------------------------------- 110
作者簡歷 --------------------------------------------- 115
表目錄
表1-1 超高電容器與二次電池之優缺點--------------- 3
表1-2 高性能電容器技術與産品發展趨勢------------ 3
表1-3 介電質與其介電常數--------------------------- 4
表1-4 各種不同型式碳材電極所製成的電容器之性質一覽表----10
表1-5 各種不同金屬氧化物及複合電極材料之電容量比較表----15
表4-1 循環伏安法沉積之鍍層沉積量與擬電容------ 64
表4-2 不同定電位下沉積釕氧化物鍍層之結果------ 74
表5-1 Rct ,Cdl and Cp of Ruthenium oxide electrodes at various potential------------------------------- 89
圖目錄
圖1-1 The schematic diagram of an electrochemical capacitor.------------------------------------------- 5
圖1-2 Ragone plot for various energy storage and conversion devices.--------------------------------------- 7
圖1-3 (A) The equivalent circuit of resistor and capacitor were series.(B) The Nyquist plot for the equivalent circuit (A). ----------------------------------------------23
圖1-4 (A)The equivalent circuit for an electrode without diffusion effect.(B) The Nyquist plot for the equivalent circuit (A).--------------------------------------- 24
圖1-5 (A) The equivalent circuit for an electrode with diffusion effect.(B) The Nyquist plot for the equivalent circuit (A).--------------------------------------- 26
圖1-6 The equivalent circuit of RuOx electrode (A) with Warburg impedance effects; (B) without Warburg impedance effects at high frequency.----------------- 27
圖2-1 (A) The schematic diagram of Ti plate on RDE.(B)The schematic diagram of an electrochemical measurement. --34
圖3-1 The effects of changing rotation rate of electrode on the I-V behaviors of CV deposition for ruthenium oxides in various potential range.------- 38
圖3-2 The effects of changing rotation rate of electrode in anodic potential region on the deposition of ruthenium oxides. --------------------------------------- 41
圖3-3 The effects of changing rotation rate of electrode on the deposition of ruthenium oxides in cathodic potential range.------------------------------------------ 42
圖3-4 (A)Cathodic polarization current of RuCl3.3H2O vs. scan number.(B)Relation of in/i1 and scanning number at various potential .------------------------------------------ 45
圖3-5 Cathodic polarization curves of RuCl3.3H2O at various rotating rate.----------------------------------- 47
圖3-6 Plot of limiting current vs. ω1/2. -------- 49
圖3-7 XPS spectra of the (A) Ru 3d5/2,3/2 (B) O 1s for RuOx deposition via cathodic sweep between 0 to -0.7V for 60 times. ---------------------------------------------------- 50
圖3-8 Plot of diffusivity vs. concentration of RuCl3.3H2O at various rotating speed of electrode. ---------------52
圖3-9 Plot of Ru(III) diffusivity vs. pH.--------- 53
圖3-10 Ru(III) diffusivity vs. [KCl].--------------- 54
圖3-11 Plot of Ru(III) diffusivity vs. aging time of the solution. ------------------------------------- 55
圖4-1 CV behaviors of RuOx growth in 10mM RuCl3. 3H2O between -0.2~1.1V vs. SCE for 100 cycles.----- 57
圖4-2 CV behaviors of RuOx growth in 10mM RuCl3.3H2O between 0.7~1.1V vs. SCE for 100 cycles. ------------- 58
圖4-3 CV behavior of a RuOx electrode with upper potential limits changed from 1.1 to 0.2V. The electrode was prepared by CV method etween —0.2~1.1V for 100 cycles.----------- 60
圖4-4 CV behavior of a RuOx electrode with upper potential limits changed from 1.1 to 0.2V. The electrode was prepared by CV method between 0.7~1.1V for 100 cycles. ----------- 61
圖4-5 The CV behaviors of Ruthenium oxides electrode prepared by CV methods between various potential range for 100 cycles in 10mM RuCl3.3H2O. --------- 63
圖4-6 SEM photographs (10,000x) of the RuOx deposited in the plating bath containing 10mM RuCl3.3H2O by CV method.--65
圖4-7 The plot of charge decay of RuOx films vs. cycle number of anodic and cathodic cycling between -0.2~1.1V in 0.5M H2SO4. ------------------------------ 67
圖4-8 XPS spectra of the O 1s for RuOx electrode prepared by CV method.-------------------------------- 68
圖4-9 SEM photographs (X3,000) of the RuOx prepared by CV method.------------------------------------------- 70
圖4-10 Current vs. deposition time of RuOx deposition in the plating both containing 10mM RuCl3.3H2O at various constant potential. ---------------------------- 72
圖4-11 The CV behaviors of Ruthenium oxide electrodes prepared by constant potential methods in 10 mM RuCl3.3H2O for 1 hour.---------------------------------- 73
圖4-12 SEM photographs (X10,000) of the cathodically deposited RuOx.3H2O in the plating bath containing 10mM RuCl3.3H2O at various potential for 1 hour. ---------- 76
圖4-13 CV behavior of RuOx in 0.5M H2SO4 electrode prepared by cathodic deposition at (A)—0.5V, (B)-0.4V, (C)-0.3V for 1 hr., pH:2; scan rate : 50mV/s. -------------------- 78
圖4-14 XPS spectra of the O 1s for RuOx via cathodic deposition .------------------------------------ 81
圖4-15 The plot of charge decay of RuOx films vs. cycle number of anodic and cathodic cycling between -0.2~1.1V in 0.5M H2SO4. Electrode prepared by cathodic deposition method at (1)-0.5V, (2)-0.4V, (3)0.9V, (4)1.1V for 1 hour.---------- 82
圖4-16 SEM photographs (X3,000) of RuOx deposited at constant potential. The deposits were treated by anodic/cathodic cycling between -0.2 and 1.1V (vs. SCE) for 10 times.--------------------------------------- 83
圖5-1 Nyquist plot of RuOx electrode at various potential in 0.5M H2SO4. Electrodes were prepared by (A) CV method between -0.2~1.1V for 100 cycle; (B)cathodic deposition at —0.5V for 1 hour.--------- 85
圖5-2 Bode plot of RuOx electrodes at various potential in 0.5M H2SO4. Electrodes were prepared by (A) CV method between -0.2~1.1V for 100 cycle, (B) cathodic deposition at —0.5V for 1 hr. and annealed at 200℃ for 3 hours.---------------- 87
圖5-3 I-V behaviors of RuOx electrodes in 0.5M H2SO4. The electrodes were prepared by (A) CV method between -0.2~1.1V for 100 cycle (B) cathodic deposition at —0.5V for 1 hour.--91
圖5-4 Effects of annealing temperature on the impedance of RuOx Electrodes in 0.5 M H2SO4. ohm resistance at Z”=0 annealing time: 3 hours.---------------------- 93
圖5-5 Effect of standing time of Ti substrate in 0.5M H2SO4 electrolyte on the CV behaviors. -------------- 96
圖5-6 SEM photographs (X10,000) of the CV deposited RuOx between -0.2 to 1.1V for 100 cycles in the plating bath containing 10mM RuCl3.nH2O .The deposits have been (A)dried at room temp. (B) annealed at 200℃, (C) annealed at 300℃. ----97
圖5-7 Plot of RuOx capacitor ESR vs. concentration of H2SO4.------------------------------------------------ 98
圖A-1 (A)Crrent of behavior in an RC circuit corresponding to the (B) potential step charge.----- 113
圖A-2 E-t behavior for current step.--------------- 114
圖A-3 I-t behavior for potential sweep.------------ 114
參考文獻
[1.] B. E. Conway, 1999, Electrochemical Supercapacitor, Kluwer Academic,New York.
[2.] L. P. Jarvis, T. B. Atwater, P. J. Cygan, 1999, “Fuel cell/ electrochemical capacitor hybrid for intermittent high power applications”, Journal of Power Sources, Vol.79, pp.60.
[3.] W. G. Pell, B. E. Conway, W. A. Adams, J. d. Oliveira, 1999, “Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications”, Journal of Power Sources, Vol.80, pp.134.
[4.] E. Faggioli, P. Rena, V. Danel, X. Andrieu, Rmallant, H. Kahen, 1999, “Supercapacitors for the energy management of electric vehicles”, Journal of Power Sources, Vol.84, pp.261.
[5.] M. Mastragostino, C. Arbizzani, A. Paraventi, A. Zanelli, 2000, “Polymer selection and cell design for electric-vehicle Supercapacitors”, J. Electrochem. Soc., Vol.147, pp.407.
[6.]薛立人,2000,“高性能電容器”,工業材料雜誌,166期,頁120-124。
[7.] R. Kotz, M. Carlen, 2000, ”Principles and applications of electrochemical capacitors”, Electrochimica Acta, Vol.45, pp.2483- 2498.
[8.] 鄧熙聖''粘駿楠,2002,碳電極之氧官能基對電化學電容器之影響,國立成功大學化學工程系碩士論文.
[9.] 鄧熙聖,林吉成,2000,已不同組成之酚醛樹脂製備多孔性碳材,國立成功大學化學工程系碩士論文.
[10.] S. T. Mayer, R. W. Pekala, J. L. Kaschmitter, 1993, “The aerocapacitor:An electrochemical double-layer energy-storage device”, Journal of the Electrochemical Society, Vol.140, pp.446..
[11.] C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent, 1977, “High power electrochemical capacitors based on carbon nanotube electrodes”, Appl. Phys. Lett., Vol.70, pp.1480.
[12.] 胡啟章,陳怡旦,1999,聚苯胺修飾膜之合成與電化學材料特性,國立中正大學化工系碩士論文。
[13.] 曾文男,蔡麗端,2001,“導電高分子於高儲能電容器上的應用”,工業材料雜誌,176期,頁145-148。
[14.] S. Ghosh, O. Inganäs, 2000, “Electrochemical characterization of Poly (3,4-ethylene dioxythiophene) based conducting hydrogel networks”, J. Electrochem. Soc., Vol.147, pp.1872.
[15.] C. Lin , J. A. Ritter , B. N. Popov, 1998, “Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors”, J. Electrochem. Soc., Vol.145, pp.4097.
[16.] V. Srinivasan , J. W. Weidner, 2002, “Capacitance studies of cobalt oxide films formed via electrochemical precipitation”, J. Power Source., Vol.108, pp.15-20.
[17.] C. C. Hu, Y. H. Huang, K. H. Chang, 2002, “Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxide for electrochemical supercapactors” J. Power Source., Vol.108, pp.117-127.
[18.] C. C. Hu, K. H. Chang, 2000, “Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors:effects of codepositing iridium oxide”, Electrochimica Acta, Vol. 45, pp. 2685-2696.
[19.] C. C. Hu, Y. H. Huang, 2001, “Effects of preparation variables on the deposition rate and physicochemical properties of hydrous ruthenium oxide for electrochemical capacitors”, Electrochimica Acta, Vol. 46, pp.3431-3444.
[20.] C. C. Hu, Y. H. Huang, 1999, “Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors”, J. Electrochem. Soc., Vol.146, pp.2465- 2471.
[21.] J. P. Zheng, P. J. Cygan, T. R. Jow, 1995, “Hydrous ruthenium oxide as an electrode material for electrochemical capacitors”, J. Electrochem. Soc., Vol.142, pp.2699-2703 .
[22.] H. Y. Lee, J. B. Goodenough, 1999, “Supercapacitor behavior with KCl electrolyte”, Journal of Solid State Chemical, Vol.144, pp.220.
[23.] 陳奕勳,胡啓章,2002,循環伏安法製備錳-鎳氧化物於電化學電容器的應用”,2002年材料年會論文.
[24.] S. C. Pang, M. A. Anderson, T. W. Chapman, 2000, “Novel electrode materials for electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide”, J. Electrochem. Soc., Vol.147, pp.444.
[25.]張仍奎,蔡文達,2002,含水氧化錳電極之製備與擬電容特性之研究”, 2002年材料年會論文.
[26.] M. M. E. Duarte, A. S. Pilla, C. E. Mayer, 2003, Electrooxidation of Mn(II) to MnO2 on graphite fibre electrode”, Journal of Applied Electrochemistry, Vol.33, pp.387-392.
[27.] Y. U. Jeong, A. Manthiram, 2000, “Amorphous ruthenium- chromium oxides for electrochemical capacitors”, Electrochemical Solid-State Lett.,vol.3, pp.206.
[28.] L. Nanni, S. Polizzi, A. Benedetti, A. D. Buttisti, 1999, “Morphology microstrcture and electrocatalytic Properties of RuO2-SnO2 thin films”, J. Electrochem. Soc., Vol.146, pp.220.
[29.] M. Ramani, B. S. Haran, R.E. White, B. N. Popov, L. Arsov, 2001, “Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide.”, Journal of Power Sources, Vol.93, pp.209-214.
[30.] C. C. Hu, C. C. Wang, 2002, “Improving the utilization of ruthenium oxide within thick carbon-ruthenium oxide composites by annealing and anodizing for electrochemical supercapacitors”, Electrochemistry Communications, Vol.4, pp.554-559.
[31.] J. Zhang, D. Jiang, B. Chen, J. Zhu, L. Jiang, H. Fang, 2001, “Preparation and electrochemistry of hydrous ruthenium oxide/active carbon electrode materials for supercapacitor”, J. Electrochem. Soc., Vol.148 ,pp.A1362-A1367.
[32.] K. S. Ryu, K. M. Kim, N. G. Park, Y. J. Park, S. H. Chang, 2002, “Symmetric redox supercapacitor with conducting polyaniline electrodes”, Journal of Power Sources, Vol.103, pp.305.
[33.] P. M. Wilde, T. J. Guther, R. Oesten , J. Garche, 1999, “Strontinm ruthenate perovskite as the active material for supercapacitors” Journal of Electrochemical Chemstry, Vol.461, pp.154-160.
[34.]胡啓章''江鴻儒,2000,循環伏安法及電鍍法製備釕電極在電化學電容器的應用,國立中正大學化學工程學系碩士論文.
[35.] K. K. Liu , M. A. Anderson, 1996, “Porous nickel oxide/ nickel films for electrochemical capacitors”, J. Electrochem. Soc., Vol.143, pp.124.
[36.] H. Y. Lee, J. B. Goodenough, 1999, “Ideal supercapacitor behavior of amorphous V2O5.nH2O in potassium chloride(KCl) aqueous solution”, Journal of Solid State Chem., Vol.144, pp.220.
[37.] Y. Taksu, T. Nakamura, H. Ohkawauchi, Y. Murakami, 1997, “Dip-coated Ru-V oxide electrochemical Capacitors”, J. Electrochem. Soc., Vol.144, pp.2601.
[38.] R. P. Simpraga, B. E. Conway, 1998, “The real area scaling factor in electrocatalysis and in charge storage by supercapacitor”, Electrochimica Acta., Vol. 43, pp.3045-3058.
[39.] S. H. Jordanv, H. A. Kozlowska, M. Vukovic, B. E. Conway, 1978 , “Reversibility and growth behavior of surface oxide film at ruthenium electrode”, J. Electrochem. Soc., Vol.125, pp.1471- 1480.
[40.] J. R. Macdonald, 1987, Impedance spectroscopy: emphasizing solid materials and systems, John Wiley&Sons, New York.
[41.] W. C. Chen, T. C. Wen, H. Teng, 2003, “Polyaniline-deposited porous carbon electrode for supercapacitor”, Electrochimica Acta., Vol. 48, pp.641-649.
[42.] W. C. Chen, T. C. Wen, A. Gopalan, 2002, “Negative capacitance for polyaniline:an analysis via electrochemical impedance spectroscpy”, Synthetic Metals, Vol. 128, pp.179-189.
[43.] I. Zhitomirsky, L. Gal-Or, 1997,“Ruthenium oxide deposits prepared by cathodic electrosynthesis”, Materials Letters, Vol.31, pp.155-159.
[44.] I. Zhitomirsky, 2002,“Cathodic electrodeposition of ceramic and organoceramic materials”, Advances in colloid and interface science, Vol.97, pp.279-317.
[45.] D. P. Anderson, L. F. Warren, 1984,“Electrochemical deposition of conducting ruthenium oxide films from solution”, J. Electrochem. Soc., Vol.131, pp.347-349.
[46.] A. J. Bard, L. R. Faulkner, 2001, Electrochemical methods fundamentals and applications, John Wiley&Sons, New York.
[47.] B. V. Crist, 2000, Handbook of monochromatic XPS spectra:The elements and native oxides, JOHY WILEY&Sons, New York.
[48.] J. Augustynski, L. Balsenc, J. Hinden, 1978, “X-ray photoelectron spectroscopic studies of RuO2 based film electrodes”, J. Electrochem. Soc., Vol.125, pp.1093- 1097.
[49.] D. Rochefort, P. Dabo, D. Guay, P. M. A. Sherwood, 2003, “XPS investigation of thermally prepared RuO2 electrodes in reductive conditions.” Electrochimica Acta, Vol.48, pp.4245-4252.
[50.] 李明宗,張六文,陳志雄,林中魁,2002,氧化釕薄膜充放電機構之X光吸收與光電子能譜研究”,2002年材料年會論文.
[51.] K.S. Kim, N. Winograd, 1974, “X-Ray photoelectron spectroscopic studies of ruthenium-oxide surfaces”, J. Catalysis, Vol.35, pp.66-72.
[51.] Yang , Jinba, V. Bohumil, 1999, “Cadmium biosorption rate in protonated sargassum biomass”,Environmental Science and Technology, Vol.33, pp. 751-757.
[52.] Y. V. Pleskov, V. Y. Filinovskii, 1976, The rotating disc electrode, Consultants Bureau, New York.
[53.] J. H. Wang ,1952,“Tracer-diffusion in liquids. I. Diffusion of tracer amount of sodium ion in aqueous potassium chloride solutions”, Journal of the American Chemical Society, Vol.74, pp. 1182-1186.
[54.] 胡啓章,王振慶,2001,活性碳披覆釕氧化物電極於電化學電容器之應用,國立中正大學化學工程學系碩士論文.
[55.] S. Valeri, G. Battaglin, G. Lode, S. Trasatti, 1986,“Effect of calcination temperature on the surface properties of Ti/RuO2 supported Co3O4 layers ”,Colloids and Surface, Vol.19, pp.387-398.
[56.] W. A. Koehler, 1944, Electrochemistry, John Wiley&Sons, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top