|
1.Ankerst M., Breunig M., Kriegel H.P. and Sander J. , June 1999, “OPTICS: Ordering points to identify the clustering structure,” In Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’99), pp. 49-60, Philadelphia, PA. 2.Agrawal R., Gehrke J., Gunopulos D. and Raghavan P. , 1998., “Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications,” Int. Conf. Management of Data, pp. 94-105, Seattle, Washington 3.Agrawal R., Mannila H., Srikant R., Toivonen H. and Verkamo A. I. , 1995, “Fast discovery of association rules,” Advances in Knowledge Discovery and Data Mining, chapter12, pp. 307-328,AAAI/MIT Press. 4.Cheng C. H., Fu A.W. and Zhang Y. , August 1999, ”Entropy-based subspace clustering for mining numerical data,” Int. Conf. Knowledge Discovery and Data Mining (KDD’99), pp. 84-93, San Diego, CA, USA. 5.Dash M., Liu M. and Xu X. , April 2001, “''1+1>2'''': Merging Distance and Density Based Clustering,” In Proc. 7th Int. Conf. Database Systems for Advanced Applications (DASFAA''''01), pp. 18-20, Hong Kong. 6.Ester M., Kriegel H.P., Sander J., Wimmer M. and Xu X., Aug.1998, “Incremental Clustering for Mining in a Data Warehousing Environment,” In Proc. 24th Int. Conf. Very Large Databases (VLDB''''98), pp. 24 - 27, New York City, NY, USA,. 7.Ester M., Kriegel H.P. , Aug. 1996, Sander J. and Xu X., “Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” In Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining (KDD’96), pp. 226-231, Portland, OR. 8.Estivill-Castro V. and Lee I. , Aug. 2000, “AMOEBA: Hierarchical Clustering Based on Spatial Proximity Using Delaunay Diagram,” In Proc. 9th Int. Spatial Data Handling (SDH2000), pp. 10-12, Beijing, China. 9.Estivill-Castro V. and Lee I. ,Aug. 2000, “AUTOCLUST: Automatic Clustering via Boundary Extraction for Massive Point Data Sets,” In Proc. 5th Int. Conf. Geo-Computation, pp. 23-25, University of Greenwich, Kent, UK. 10.Guha S., Rastogi R. and Shim K. , June 1998, “CURE: An efficient clustering algorithm for large databases,” In Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’98), pp. 73-84, Seattle, WA. 11.Guha S., Rastogi R. and Shim K. , Mar. 1999, “ROCK: A Robust Clustering Algorithm For Categorical Attribute,” In Proc. 1999 Int. Conf. Data Engineering (ICDE’99), pp. 512-521, Sydney, Australia. 12.Han J. and Kamber M., , 2000 “Data Mining: Concepts and Techniques,” Morgan Kaufmann. 13.Huang Z. , (1998), "Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values," Data Mining and Knowledge Discovery, Vol. 2, pp. 283-304. 14.Karypis G., Han E.H. and Kumar V. , 1999, “CHAMELEON: Hierarchical Clustering Using Dynamic Modeling,” IEEE Computer, Vol. 32, No. 8, pp. 68-75. 15.Kaufman L. and Rousseeuw PJ, 1990, “Finding Groups in Data: an Introduction to Cluster Analysis,” John Wiley & Sons. 16.MacQueen J. , 1967, “Some Methods for Classification and Analysis of Multivariate Observations,” In Proc. 5th Berkeley Symp. Math. Stat. and Prob., Vol. 1, pp. 281-297. 17.Raymond T. Ng and Jiawei Han. , Sept. 2002, “ CLARANS:A Method for Clustering Objects for Spatial Data Mining,” IEEE Computer Society, Vol. 14, No. 5, pp. 1003-1016. 18.Sheikholeslami G., Chatterjee S., and Zhang A. , Aug. 1998, “WaveCluster: A multi-resolution clustering approach for very large spatial databases,” In Proc. 1998 Int. Conf. Very Large Databases (VLDB’98), pp. 428-439, New York. 19.Sander J., Ester M., Kriegel H.P. and Xu X. , 1998, “Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and its Applications,” In Proc. Int. Conf. Data Mining and Knowledge Discovery, Kluwer Academic Publishers, Vol. 2, No. 2. 20.Wang W., Yang and Muntz R. , Aug. 1997, “STING: A Statistical Information grid Approach to Spatial Data Mining,” In Proc. 1997 Int. Conf. Very Large Data Bases(VLDB’97), pp. 186-195, Athens, Greece. 21.Xu X., Ester M., Kriegel H.P. and Sander J. , 1998, “A distribution— based Clustering Algorithm for Mining in Large Spatial Databases," In Proc. 14th Int. Conf. Data Engineering (ICDE''''98), Orlando, Florida, USA. 22.Zhang T., Ramakrishnan R. and Livny M. , 1996, “BIRCH: An Efficient Data Clustering Method for Very Large Databases,” In Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’96), pp. 103-114. 23.Kohonen, T. , 1996, “Self-organizing maps: Optimization approaches,“ in Artificial Neural Networks, T. Kohonen, K. Makisara, O. Simula, and J. Kangas, Eds. Amsterdam,Bigus, J.P., Data Mining with Neural Networks, McGraw-Hill Company. 24.K. Alsabti, S. Ranka, and V. Singh. “An Efficient K-Means Clustering Algorithm”. http://www.cise.ufl.edu/_ ranka/, 1997. 25.T. H. Cormen, C. E. Leiserson, and R. L. Rivest. ”Introduction to Algorithms.” McGraw-Hill Book Company, 1990. 26.R. C. Dubes and A. K. Jain. “Algorithms for Clustering Data.” Prentice Hall, 1988. 27.J. Garcia, J. Fdez-Valdivia, F. Cortijo, and R. Molina. ”Dynamic Approach for Clustering Data”. Signal Processing , 44:(2), 1994. 28.V. Ramasubramanian and K. Paliwal. “Fast K-Dimensional Tree Algorithms for Nearest Neighbor Search with Application to Vector Quantization Encoding.” IEEE Transactions on Signal Processing, 40:(3), March 1992. 29.R. Laurini and D. Thompson, “Fundamentals of Spatial Information Systems.” Academic Press, 1992. 30.W. Lu, J. Han, and B. Ooi, “Discovery of General Knowledge in Large Spatial Databases,” Proc. Far East Workshop Geographic Information Systems, pp. 275—289, 1993. 31.G. Milligan and M. Cooper, “An Examination of Procedures for Determining the Number of Clusters in a Data Set,” Psychometrika, vol. 50, pp. 159—179, 1985.
|