跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/05 20:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭明泉
研究生(外文):Ming-Chuan Hsiao
論文名稱:全光式光波導元件之研究
論文名稱(外文):The study of all-optical waveguide devices
指導教授:吳曜東吳曜東引用關係
指導教授(外文):Yaw-Dong Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:100
中文關鍵詞:非線性光波導空間光固子柯爾非線性材料分波多工器
外文關鍵詞:nonlinear optical waveguidespatial solitonkerr-type nonlinear mediumwavelength division multiplexing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:669
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是討論非線性光波導的特性,非線性光波導是指光波導結構中含有折射率會隨電場強度而改變的介質。利用模態定理推導出導波層為非線性之三層光波導結構的固有值方程式;從三層所得到的結果,吾人可以利用此方法來分析覆層為非線性之光波導結構,分別繪出其不同導波層厚度的電場分佈圖和色散曲線圖。另一方面,吾人利用非線性的影響,分別提出間隔層、覆層為非線性的全光式元件,並藉由光束傳播法對吾人所提出的元件做詳細的分析。
首先,吾人討論由非線性覆層組成的三層光波導結構,當輸入適當的功率,並透過輸入波導的不同偏移量,可以發現在線性-非線性的介面會出現不同程度的震盪現象;利用空間光固子間的吸引-排斥特性,在這裡提出了作用層為非線性的全光式邏輯元件,經由適當的功率及元件長度,可以達成基本的邏輯功能(AND, OR, XOR);另外,利用覆層為非線性和波導漸細的影響,提出了一個全光式的切換器,此切換器藉由不同模態去控制其輸出位置來達成切換器的功能;最後,利用非線性微擾的作用,提出新的全光式結構,利用此簡單的結構便可以實現分波多工器的功能。在超高速與超高容量的光通訊與光資訊處理應用中,它將扮演極重要的關鍵元件。
In this thesis, it discussed the properties of nonlinear optical waveguides. Nonlinear waveguide means that the refractive indices of the optical waveguide changed with the electric field intensity. By using the modal theory, it derived the eigenvalue equation in the three-layer optical waveguide with nonlinear cladding. We could use the results to analyze optical waveguide with nonlinear cladding. It not only obtained dispersion relation curves, but also observed the electric field distribution at various thickness of guiding film. On the other hand, we propose an all-optical device, that the interaction layer or cladding is nonlinear, respectively. We analyze the all-optical photonic device by the beam propagation method.
First, the three-layer optical waveguide with nonlinear cladding will be discussed. We can obtain the difference oscillation paths on the linear-nonlinear interface. By using the spatial solitons attraction-repulsion properties, we proposed an all-optical logic device with nonlinear interaction layer. The numerical results show that the proposed photonic device could really function as AND, OR, and XOR gates by simply adjusting parameters such as the input power, the device length. In addition, by using the two-mode tapered waveguide with nonlinear cladding, an all-optical switching device has been proposed. The numerical results show that this device could really function as an all-optical switch. Finally, we proposed new all-optical waveguide structures that could function as wavelength division multiplexers (WDM). It would be a potential key component in the applications of ultra-high-speed and ultra-high-capacity optical communications and optical data processing systems.
Chinese Abstract i
Abstract iii
Acknowledgement v
List of Tables vi
List of Figures vii
Chapter 1: Introduction 1
Chapter 2: Basic theory and method
2.1. Modal theory and dispersion relation 5
2.2. Beam propagation method 11
Chapter 3: Numerical Study of the localized nonlinear optical waveguide excited by a linear input waveguide
3.1. Introduction 23
3.2. Numerical method 23
3.3. Numerical Results 25
3.4. Summary 26
Chapter 4: Coupled-soliton All-optical Logic Device with Two Parallel Tapered Waveguides
4.1. Introduction 37
4.2. Numerical Method 38
4.3. Numerical Results and Discussions 39
4.4. Summary 44
Chapter 5: Nonlinear All-optical Switching Devices Containing a Two-mode Tapered Waveguide
5.1. Introduction 55
5.2. Numerical method 55
5.3. Results and Discussions 57
5.4. Summary 59
Chapter 6: All-Optical Wavelength Auto-Router Based on Spatial Solitons
6.1. Introduction 72
6.2. Analysis 74
6.3. Numerical results and discussions 75
6.4. Summary 80
Chapter 7: Conclusion
7.1. Summary 91
7.2. Suggestions for future researches 92
Reference 94
[1] S. Maneuf, R. Desailly, and C. Froehly, 1998, “Stable self-trapping of laser beams: Observation in a nonlinear planar waveguide,” Opt. Commun., Vol.65, pp.193-198.
[2] Y. R. Shen, 1975, “Self-focusing: experimental,” Prog. Quantum Electron., Vol.4, pp.1-34.
[3] J. H. Marburger, 1975, “Self-focusing: theory,” Prog. Quantum Electron., Vol.4, pp.35-110.
[4] J. T. Manassah, P. L. Baldeck, and R. R. Alfano, 1988, “Self-focusing and self-phase modulation in a parabolic graded-index optical fiber,” Opt, Lett., Vol.13, pp.589-591.
[5] J. T. Manassah, P. L. Baldeck, and R. R. Afano, 1998, “Self-focusing, self-phase modulation, and diffraction in bulk homogeneous material,” Opt. Lett., Vol.13, pp.1090-1092.
[6] N. Finlayson, W. C. Banyai, E. M. Wright, C. T. Seaton, G. I. Stegeman, T. J. Cullen, and C. N. Ironside, 1988, “Picosecond switching induced by saturable absorption in a nonlinear directional coupler,” Appl. Phys. Lett., Vol.53, pp.1144-1146.
[7] A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchinson, and C. N. Ironside, 1992, “Ultrafast all-optical switching in semiconductor nonlinear directional coupler at half band gap,” Appl. Phys. Lett., Vol.61, pp.147-149.
[8] K. Al-hemyai, J. S. Aitchison, C. N. Ironside, G. T. Kennedy, R. S. Grant, and W. Sibbett, 1992, “Ultrafast all-optical switching in GaAlAs integrated interferometer in 1.55μm spectral Region,” Electron. Lett., Vol.28, pp.1090-1092.
[9] S. Nakamura, K. Tajima, and Y. Sugimoto, 1994, “Experimental investigation on high-speed switching characteristics of a novel symmetric Mach-Zehnder all-optical switch,” Appl. Phys. Lett., Vol.65, no.3, pp.283-285.
[10] M. S. Borelly, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, 1997, “Optical Components for WDM Lightwave Networks,” Proc. IEEE., Vol.85, no.8, pp.1274-1307.
[11]. Y. Chung and N. Dagli, 1990, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron., Vol.26, pp.1335-1339.
[12] P. Danielsen, and D. Yevick, 1982, “Improved analysis of the propagating beam method in longitudinally perturbed optical waveguides,” Appl. Opt., Vol.21, pp.4188-4189.
[13] D. Yevick, and B. Hermansson, 1990, “Efficient beam propagation techniques,” IEEE J. Quantum Electron., Vol.QE-26, pp.109-112.
[14] A. Splett, M. Majd, and K. Petermann, 1991, “A novel beam propagation method for large refractive index steps and large propagation distance,” IEEE Photon. Technol. Lett., Vol.3, pp.466-468.
[15] B. M. Nyman, and P. R. Prucnal, 1989, “The modified beam propagation method,” J. Lightwave Technol., Vol.7, pp.931-936.
[16] J. van Roey, J. van der Donk, and P. E. Lagasse, 1981, “Beam propagation method: analysis and assessment,” J. Opt. Soc. Am., Vol.71, pp.803-810.
[17] R. Scarmozzino and R. M. Osgood, Jr, 1991, “Comparison of finite-difference and Fourier-Transform solutions of the parabolic wave equation with emphasis on integrated-optics applications,” J. Opt. Soc. Am. A., Vol.8, pp.723-731.
[18] Feit, M. D., and J. A. Fleck, Jr., 1978, “Light propagation in graded-index optical fibers,” Appl. Opt., Vol.17, pp.3990-3998.
[19] F. Lederer, U. Langbein, and H. —E. Ponath, 1983, “Nonlinear waves guided by a dielectric slab,” Appl. Phys. B, Vol.31, pp.69-73.
[20] G. I. Stegeman, C. T. Seaton, J. Chilwell, and S. D. Smith, 1984, “Nonlinear waves guided by thin films,” Appl. Phys. Lett., Vol.44, pp.830-832.
[21] P. Li Kam Wa, J. E. Stich, N. J. Mason, J. S. Robert, P. N. Robson, 1985, “All optical multiple—quantum—well waveguide switch,” Electron Lett., Vol.21, pp.26-27.
[22] J. D. Valera, B. Svensson, C. T. Seaton, and G. I. Stegeman, 1986, “Bistability and switching in thin film waveguides with liquid crystal cladding,” Appl. Phys. Lett., Vol.48, pp.573-574.
[23] J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, 1986, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett., Vol.48, pp.826-828.
[24] J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, 1986, “Numerical evidence for nonstationary, nonlinear, slab-guided waves,” Opt. Lett., Vol.11, pp.315-317.
[25] J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, 1986, “New theoretical developments in nonlinear guided wave stability of TE1 branches,” IEEE J. Quantum Electron., Vol.QE-22, pp.984-987.
[26] L. Leine, Ch. Wachter, U. Langbein, and F. Lederer, 1986, “Propagation phenomena of nonlinear film-guided waves: a numerical analysis,” Opt. Lett., Vol.11, pp.590-592.
[27] C. C. Yang, 1991, “All-optical ultrafast logic gates that use asymmetric nonlinear directional couplers,” Opt. Lett., Vol.16, pp.1641-1643.
[28] L. S. Tamil and A. K. Jordan, “Synthesis of optical interconnects and logic gates,” Guided-Wave Optoelectronics, eds. T. Tamir, G. Griffel and H. L. Bertoni (Plenum, New York and London, 1995) 1st ed., pp.177-186.
[29] J. M. Jeong and M. E. Marhic, 1991, “All-optical logic gates based on cross-phase modulation in a nonlinear fiber interferometer,” Opt. Commun., Vol.85, pp.430-436.
[30] R. McLeod, K. Wagner, and S. Blair, 1995, “(3+1)-Dimensional optical solition dragging logic,” Phys. Rev. A, Vol.52, pp.3254-3278.
[31] S. Blair, K. Wagner, and R. McLeod, 1994, “Asymmetric spatial soliton dragging,” Opt. Lett., Vol.19, pp.1943-1945.
[32] O. V. Kolokoltsev, R. Salas, and V. Vountesmeri, 2002, “All-Optical Phase-Independent Logic Elements Based on Phase Shift Induced by Coherent Soliton Collision,” Journal of Lightwave Technology, Vol.20, pp.1048-1053.
[33] N. Trivunac-Vukovic, B. Milovanovic, 2001, “Realization of full set of logic gates for all-optical ultrafast switching,” TELSIKS, Vol.2, pp.500-503.
[34] R. W. Micallef, YU. S. Kivshar, J. D. Love, D. Burak, and R. Binder, 1998, “Generation of spatial solitons using nonlinear guided modes,” optical and quantum Electronics, Vol.30, pp.751-770.
[35] Y. D. Wu, M. H. Chen, and C. H. Chu., 2001, “All-Optical Logic Device Using Bent Nonlinear Tapered Y-Junction Waveguide Structure,” Fiber and Integrated Optics, Vol.20, pp.517-524.
[36] M. A. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton and J. V. Moloney, 1987, “Numerical study of soliton emission from a nonlinear waveguide,” J. Opt. Soc. Am. B, Vol.4, pp.1837-1842.
[37] M. Gubbels, E. M. Wright, G. I. Stegeman, C. T. Seaton and J. V. Moloney, 1987, “Effect of absorption on TE0 nonlinear guided waves,” Opt. Commun., Vol.61, pp.357-362.
[38] G. I. Stegeman and E. M. Wright, 1990, “All-optical waveguides switching,” Opt. Quantum Electron., Vol.22, pp.92-122.
[39] G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanonl, and C. T. Seaton, 1988, “Third order nonlinear integrated optics,” IEEE J. Lightwave Technol., Vol.6, pp.953-970.
[40] F. Garzia, C. Sibilia, and M. Bertolotti, 2001, “New Phase Modulation Technique Based on Spatial Soliton Switching,” IEEE J. Lightwave Technol., Vol.19, No.7, pp.1036-1050.
[41] S. M. Jensen, 1982, “The nonlinear coherent coupler,” IEEE J. Quantum Electron., Vol.QE-18, pp.1580-1583.
[42] P. L. K. Wa, J. E. Sitch, N. J. Mason, J. S. Roberts, and P. N. Robson, 1985, “All-optical multiple-quantum-well waveguide switch,” Electron, Lett., Vol.21, pp.26-28.
[43] A. Lattes, H. A. Haus, F. J. Leonberger, and E. P. Ippen, 1983, “ An ultrafast all-optical gate,” IEEE J. Quantum Electron., Vol.QE-19, pp.1718-1723.
[44] H. Kawaguchi, 1985, “Proposal for a new all-optical waveguide functional device,” Opt. Lett., Vol.10, pp.411-413.
[45] Y. Silberberg and B. G. Sfez, 1988, “All-optical phase- and power-controlled switching in nonlinear waveguide junctions,” Opt. Lett., Vol.13, pp.1132-1134.
[46] H. Fouckhardt and Y. Silberberg, 1990, “All-optical switching in waveguide X Junctions,” J. Opt. Soc. Amer. B, Vol.7, pp.803-809.
[47] J. P. Sabini, N. Finlayson, and G. I. Stegeman, 1989, “All-optical in nonlinear X-junctions,” Appl. Phys, Lett., Vol.55, pp.1176-1178.
[48] T. S. shi and S. Chi, 1992, “Nonlinear TE-wave propagation in a symmetric, converging, single-mode Y-junction waveguide,” J. Opt. Soc. Amer. B, Vol.9, pp.1338-1340.
[49] J. S. Aitchison, A. Villeneuve, and G. I. Stegeman, “All-optical switching in a nonlinear GaAlAs X junction,” Opt. Lett., Vol.18, pp.1153-1155, 1993.
[50] P. L. K. Wa and A. M. Kan’an, “Ultrafast all-optical switching in multiple-quantum-well Y-junction waveguides at the band gap resonance,” IEEE J.Select. Topics Quantum Electron., Vol.2, pp.655-660, 1996.
[51] R. Y. Ciao, E. Gramire, C. H. Townes, 1964, “Self-trapping of optical beams,” Phys. Leet., Vol.13, pp.479-482.
[52] Y. D. Wu, “All-Optical switching device by using the spatial soliton collision,” Fiber and Integrated Optics, Vol.23.4, 2004, (to be published).
[53] Y. D. Wu, M. H. Chen, K. H. Chiang, and R. Z. Tasy, 2003, “New all-optical switching device by using interaction property of spatial optical solitons in uniform nonlinear medium,” Optics and Potonics Taiwan Ⅲ, pp.215-217.
[54] Y. D. Wu, B. X. Huang, 2003, “All-optical switching device by using the interaction of spatial solitons,” Optics and Potonics Taiwan Ⅲ, pp.164-166.
[55] F. Garzia, C. Sibilia and M. Bertolotti, 2000, “All-optical serial switcher,” Optical and Quantum Electronics., Vol.32, pp.781-798.
[56] F. Garzia, C. Sibilai, M. Bertolotii, 1999, “All-optical soliton based router,” Optics Comm., Vol.168, pp.277-285.
[57] F. Garzia, C. Sibilia, and M. Bertolotii, 2001, “New phase modulation technique based on spatial soliton switching,” IEEE J. Lightwave Tecnol., Vol.19, no.7, pp.1036-1050.
[58] E. Ibragimov, 1998, “All-optical switching using three-wave-interaction solitons,” J. Opt. Soc. Am. B, Vol.15, pp.97-102.
[59] Y. D. Wu, M. H. Chen, and C. H. Chu, 2001, “All-optical logic device using bent nonlinear tapered Y-junction waveguide structure,” Fiber and Integrated Optics., Vol.20, pp.517-524.
[60] Y. D. Wu, “Coupled-soliton all-optical logic device with two parallel tapered waveguides,” Fiber and Integrated Optics. 2004, (to be published).
[61] M. Zitelli, E. Fazio, and M. Bertolotti, 1999, “All-optical NOR gate based on the interaction between cosine-shaped input beams of orthogonal polarization,” J. Opt. Soc. Am. B, Vol.16, pp.214-218.
[62] N. T. Vukovic, B. Milovanovic, 2001, “ Realization of full set of logic gates for all-optical ultrafast switching,” IEEE Telsiks., pp.500-503.
[63] S. Blair and K. Wagner, 1999, “Spatial soliton angular deflection logic gates,” Applied. Optics., Vol.38, pp.6749-6771.
[64] G. Cancellieri, F. Chiaraluce, E. Gambi, and P. Pierleoni, “All-optical polarization modulator based on spatial soliton coupling,” J. Lightwave. Technol., Vol.14, pp.513-523, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 18.高敏峰,「從ISO 9001二千年新版談企業因應之道」,電子檢測與品管,No. 45,2001年1月,38-41。
2. 17.柯煇耀,「加速壽命試驗之概念與釋義」,電子檢測與品管,No. 42,2000年4月,38-43。
3. 36.戴久永,「追求顧客滿意強化競爭實力」,品質管制月刊,第三十六卷,No. 5,2000,37-39。
4. 6.朱豔芳、邱華凱、劉煒仁,「結合Kano二維品質模式與QFD之教學品質實證研究」,品質學報,第八卷,No. 2,2001,95-124。
5. 9.李天行、邵曰仁、周守民、吳家淑,「應用QFD改善輔仁大學院校教育品質之研究-以輔仁大學管理學院為例」,品質學報,第九卷,No.1,2002,175-195。
6. 4.朱華基,「可靠度改善流程中失誤原因分析方法的運用」,品質管制月刊,第三十六卷,No. 9,2000,79-90。
7. 15.柯煇耀、張國仁,「MIL-HDBK-217可靠度預估的基礎」,電子檢測與品管,No. 42,2000年4月,30-36。
8. 11.吳信宏,「從顧客的角度探討對品質的看法」,品質管制月刊,第三十六卷,No. 6,2000,34-37。
9. 1.丁學勤,「由顧問抱怨加強品質保證的新思維」,品質管制月刊,第三十四卷,No. 12,1998,66-71。
10. 19.陳耀茂,「使用現場可靠性數據的解析法~CHM解析法~」,品質管制月刊,第三十六卷,No. 6,2000,51-55。
11. 8.阮約翰、林義貴,「機率性負載量與預算限制下求多種商品利用貨櫃運輸之可靠度問題」,中國工業工程學刊,第十六卷,No. 5,1999,639-647。
12. 40.關季明,「失效模式與效應關鍵分析與品質機能展開之正確應方法-全面品質經營(TQM)之利器」,品質管制月刊,第三十五卷,No. 5,1999,83-85。
13. 29.詹昭雄,「新產品開發品質預見預防管理」,品質管制月刊,第三十六卷,No. 12,2000,56-57。
14. 24.許聰鑫、黎正中,「QFD品質量化工作的討論」,品質學報,第三卷,No. 1,1996,65-79。
15. 22.陳明郁、葉瑞徽,「年齡相關維修成本下產品之主動維護保證策略」,中國工業工程學刊,第十九卷,No. 4,2002,11-16。