跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 01:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林棟宏
研究生(外文):D. H. Lin
論文名稱:黏土基添加奈米級氧化鋯的增韌及力學性質
論文名稱(外文):Toughening and Mechanical Properties of Nano-Zirconia/Clay
指導教授:潘 煌 鍟
指導教授(外文):H. H. Pan
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:土木工程與防災科技研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:87
中文關鍵詞:奈米氧化鋯3Y-TZP黏土相變增韌燒結
外文關鍵詞:Nano ZrO23Y-TZPClayTransformation TougheningSintering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:731
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
商用黏土添加2﹪~10%體積含量的奈米級3Y-TZP,經高能球磨混合及乾壓成型,並以1250°C燒結成以黏土為基材、3Y-TZP為介質的黏土基氧化鋯二相陶瓷。實驗結果顯示,燒結相對密度增加0.9~2.5﹪,三彎點抗折強度增加11~26﹪,楊氏模數增加5~18﹪,維氏硬度增加2.4~10.5﹪及破壞韌性增加5.8~33.8﹪;本研究利用二相陶瓷相變增韌微觀力學理論分析氧化鋯的相變增韌,可以合理地估算相變區半高H及相變增韌 ,其值很接近文獻的實驗觀測值。因此,就二相陶瓷的增韌及力學性質評估,商用黏土添加奈米級3Y-TZP是頗有效益且可行的。此外,由實驗及理論得知,相變膨脹量對相變增韌的效應大於相變半高H,且提高介質的柏松比及楊氏模數有助於相變增韌,當剪力模數比 較大時亦能增韌;因此,選擇柏松比、楊氏模數較高的介質及剪力模數比 的應力誘發相變材料,更能有效地獲得相變增韌。
Commercial clay was admixed 2~10 percentage nano particle of 3 mole yttria- doped tetragonal zirconia polycrystals (3Y-TZP)in volume, mixed with high energy ball-milling and then formed by dry pressed into a two-phase ceramic material which consists of clay as the matrix and(3Y-TZP)as the inclusion. The mechanical properties of nano-zirconia/clay were examined by measuring the density, the strength, Young’s modulus, the hardness and the toughness after sintered for 2 hours at temperatures 1250°C. The experimental results indicated that the increments of sintering relative density, three-point bending strength, Young’s modulus, Vicker’s hardness and the fracture toughness were about 0.9~2.5%, 11~25%, 15~18%, 2.4~10.5% and 5.8~ 33.8%, respectively. According to the micromechanics theory of the transformation toughening, the transformation half-height H of the process zone and the fracture toughness increment under a steadily growing crack are evaluated. The results of H and were in well agreement compared with the experimental observation of literature. Therefore, admixing nano 3Y-TZP into commercial clay would enhance the mechanics properties and the toughness of the ceramic composites. Furthermore, at this experiment, the contribution of the volumetric expansion of the inclusions on the transformation toughening is greater than that of the transformation height. Inclusions with high Poison’s ratio and Young’s modulus are found to be more effective in transformation toughening. Toughening is also more effective while the shear modulus ratio of becomes large. As such, it is better to choose the stress-induced transformation material with , inclusions with high Poison’s ratio and Young’s modulus, to obtain a more effective toughening.
目 錄
摘 要 ......................................................i
英 文 摘 要................................................ii
誌 謝.......................................................iii
目 錄.........................................................iv
表 目 錄 ....................................................vi
圖 目 錄 ...................................................vii
符號說明 .....................................................x
第一章 緒論....................................................1
1.1 研究的動機與目的..........................................1
1.2 研究範圍與方法 .........................................3
1.3 研究步驟 ................................................5
第二章 文獻探討...............................................6
2.1 脆性破裂(Brittle Fracture)理論.........................6
2.2 McMeeking 及Evans的脆性材料相變增韌理論.............12
2.3 Budiansky的陶瓷膨脹相變增韌理論 ......................15
第三章 實驗理論 .......................................25
3.1 非均質相變區之位能及相變應變.............................25
3.2 非均質相變區的高度........................................27
3.3 非均質相變增靭 ........................................29
第四章 實驗計畫 ........................................33
4.1 試驗目的及項目........................................33
4.2 試驗材料及變數 ........................................33
4.3 備料及試片製作 ........................................33
4.4 試驗方法及設備 ........................................35
4.5 相變增韌計算方法........................................38
第五章 試驗結果與分析........................................56
5.1 試體生胚與燒結體微觀分析..................................56
5.2 X-Ray繞射分析 ........................................56
5.3 燒結密度 ........................................56
5.4 抗折強度及彈性模數........................................57
5.5 硬度及破壞韌性 ........................................57
5.6 氧化鋯相變增韌 ........................................58
第六章 結論與建議 ........................................78
參考文獻 ........................................80
附 錄 ........................................84
表 目 錄
表2-1 k函數之值【12】........................................20
表4-1-1 黏土化學成分含量表....................................41
表4-1-2 釔部份穩定氧化鋯(3Y-TZP)化學成分含量表.............41
表4-2 釔部份穩定氧化鋯(3Y-TZP)物理及力學性質.............42
表4-3 黏土之介質(氧化鋯)體積含量配比表.............42
表4-4 室溫下ZrO2原子晶格參數【9,45】.............42
表5-1 燒結黏土SEM EDX半定量分析(Atomic數).............60
表5-2 X-Ray繞射分析m- 含量 .............60
表5-3 試片體積密度及相對密度.............61
表5-4 三彎點抗折強度及楊氏模數.............61
表5-5 燒結試片維氏硬度(Hv).............
表5-6 燒結試片破裂韌性( ).............62
表5-7 相變半高H及相變增韌 值.............63
表5-8 破壞韌性與韌性增量.............64
表5-9 相變增韌與韌性增量.............64
圖 目 錄
圖1-1 應力激發相變機構圖.............3
圖1-2 微裂縫增韌機構圖.............3
圖2-1(a)表面和內部裂縫的幾何形狀;(b)沿 的應力分佈示意圖。.............20
圖2-2 三種裂縫表面位移的模式。模式Ι,開口或張力模式;模式Ⅱ,滑移模式;模式Ⅲ,撕裂模式。.............21
圖2-3 受張力模式I形狀的負載在裂縫前端之應力分佈.............21
圖2-4 裂縫尖端相變示意圖【12】.............22
圖2-5(A)拘束及無拘束相變區,需超距力保持應力聯繫;(B)應力強度分析座標圖【12】 .............22
圖2-6 進入主相變區深度 之應力分佈圖【12】.............22
圖2-7 應力強度因子分析之R曲線【12】.............23
圖2-8 靜定開裂相變示意圖【44】.............23
圖2-9 裂縫尖端對稱膨脹圓柱質點示意圖【44】.............24
圖2-10 Steady-state growth under constant K【44】.............24
圖3-1 穩態開裂膨脹相變區幾何關係圖【20】.............32
圖3-2 含均勻分佈橢球體介質的二相複合材料.............32
圖4-1 奈米 Slurry漿體顆粒粒度分析.............43
圖4-2 氧化鋯奈米粒子分散過程.............43
圖4-3 試片備料及製程流程圖 .............44
圖4-4 球磨機運作及外觀.............44
圖4-5-1 圓餅狀試片壓模(內徑12mmΦ).............45
圖4-5-2 圓餅狀試片壓模(內徑12mmΦ).............45
圖4-5-3 長條試片壓模(內模13 mm 13mm 76 mm).............46
圖4-5-4 長條試片壓模組裝完成.............46
圖4-6-1 圓餅狀生胚試片.............47
圖4-6-2 長條狀生胚試片.............47
圖4-7 高溫燒結爐.............48
圖4-8 Vickers微硬度壓子壓入試片表面破裂型態(A)初始壓痕,.............48
(B)延伸中間裂縫【54】.............48
圖4-9-1 試片準備以環氧樹脂冷包埋(Cold Mounting).............49
圖4-9-2 試片完成環氧樹脂冷包埋(Cold Mounting).............49
圖4-10-1 日製Mitutoyo MVK-H1微硬度機(P=100∼1000g)..........50
圖4-10-2 日製Akashi AVK-C2標準硬度機(P=1000∼50000g)........50
圖4-11 日製Shimadzu AGS-500A萬能試驗機.............51
圖4-12 抗折試驗斷裂試片.............51
圖4-13 精密電子秤量測試片在水中的懸浮重.............52
圖4-14 導電銀膠黏結試片固定於拾圓硬幣(SEM Sample)...........52
圖4-15 真空蒸鍍機(Ion Sputter).............53
圖4-16 場發射型掃描式電子顯微鏡(FE-SEM,JSM-6330TF).........53
圖4-17 掃描式電子顯微鏡(SEM,JSM6400,20KV).............54
圖4-18 日製Rigaku D/maxⅡB X-ray繞射儀.............54
圖4-19 相變半高H及相變增韌 計算流程 .............55
圖4-20 ZrO2相變幾何關係圖(下標m表示原始相;c表示變相)【9】.............55
圖5-1 ZrO2含量c1=0﹪生胚SEM圖.............65
圖5-2 ZrO2含量c1=2﹪生胚SEM圖.............65
圖5-3 ZrO2含量c1=4﹪生胚SEM圖.............66
圖5-4 ZrO2含量c1=6﹪生胚SEM圖.............66
圖5-5 ZrO2含量c1=8﹪生胚SEM圖.............67
圖5-6 ZrO2含量c1=10﹪生胚SEM圖.............67
圖5-7 ZrO2含量c1=0﹪燒結體SEM圖.............68
圖5-8 ZrO2含量c1=2﹪燒結體SEM圖.............68
圖5-9 ZrO2含量c1=4﹪燒結體SEM圖.............69
圖5-10 ZrO2含量c1=6﹪燒結體SEM圖.............69
圖5-11 ZrO2含量c1=8﹪燒結體SEM圖.............70
圖5-12 ZrO2含量c1=10﹪燒結體SEM圖.............70
圖5-13 ZrO2含量c1=2﹪燒結試片破裂面X-ray繞射相對強度.........71
圖5-14 ZrO2含量c1=4﹪燒結試片破裂面X-ray繞射相對強度.........71
圖5-15 ZrO2含量c1=6﹪燒結試片破裂面X-ray繞射相對強度.........72
圖5-16 ZrO2含量c1=8﹪燒結試片破裂面X-ray繞射相對強度.........72
圖5-17 ZrO2含量c1=10﹪燒結試片破裂面X-ray繞射相對強度........73
圖5-18 ZrO2含量c1=10﹪X-ray繞射相對強度( ).........73
圖5-19 試片相對密度.............74
圖5-20 抗折強度試驗.............74
圖5-21 楊氏模數試驗.............75
圖5-22 維氏硬度.............75
圖5-23 破壞韌性.............76
圖5-24 破壞韌性 與 比較圖.............76
圖5-25 理論破壞韌性與實驗破壞韌性比較圖.............77
圖5-26 維氏硬度壓痕.............77
1. E. C. Subbarao,“Zirconia-An Overview”, Advances in Ceramics, V3: Science and Technology of Zirconia, Edited by A. H. Heuer and L. W. Hobbs, J. Am. Ce- ram. Soc. Inc. p1-24(1981).
2. D. K. Smith and C. F. Cline,“Verification of Existence of Cubic Zirconia at High Temperature ”, ibid. 45 [5] 249-250 (1962).
3. J. E. Bailey,“Monoclinic-Tetragonal Transformation and Associated Twinning In Thin Films of Zirconia”, Proc Roy. Soc., A 4. 279 [1378] 395-412 (1964).
4. G. M. Wolten,“Diffusionless phase transformation in Zirconia and Nafnia”, J. Am. Ceram. Soc. 46 [9] 418-22 (1963).
5. R. N. Patil and E. C. Subbarao, “Axial Thermal Expansion of ZrO2 and HfO2 in the Range Room Temp. to 1400。C”, J. Appl. Crystallogr. 2 [6] 281-88 (1969)
6. P. Duwez, F. H. Brown, Jr., and F. Odell,“Zirconia-Yttria System”, J. Electrochem. Soc., 98 [9] 356~62 (1951).
7. P. Duwez, F. Odell and F. H. Brown. Jr.“Stabilization of Zirconia with Calcia and Magnesia ”, J. Am. Ceram. Soc., 35 [5] 107-113 (1952.)
8. N. Claussen,“Stress-Induced Transformation of Tetragonal ZrO2 Particles in Ceramic Matrices ” J. Am. Ceram. Soc., 61 [1-2] 85-86 (1978).
9. D. L. Porter, A. G. Evans, and A. H. Heuer,“Transformation-Toughening Partially-Stabilized Zirconia (PSZ) ” Acta Metall., 27 [10] 1649-54 (1979).
10. A. G. Evans and A. H. Heuer,“Review-Transformation Toughening in Ceramics: Martensitic Transformation in Crack-Tip Stress Fields ”, J. Am. Ceram. Soc., 63 [5-6] 241-48 (1980).
11. O. Ruff and F. Ebert, Z. Anorg,“Refractory Ceramics:1, The Forms of Zirconia Dioxide”, Allgem, Chem., 180 [1] 19-41 (1929).
12. R. M. McMeeking and A.G. Evans,“Mechanics of Transformation-Toughening in Brittle Materials”, J. Am. Ceram. Soc., 65 [5] 242-46(1982).
13. A. G. Evans and K. T. Faber,“Toughening of Ceramics by Circumferential Microcracking”, J. Am. Ceram. Soc., 64 [7] 394-98 (1981).
14. A. G. Evans, D. B. Marshall and N. H. Burlingame,“Transformation Toughening in Ceramics”, Advances in Ceramics V3: Science and Technology of Zirconia Ⅰ, edited by A. H. Heuer and L. W. Hobbs, Am. Ceram. Soc., p202-216(1981).
15. N. Claussen,“Comments on:Precipitation in Partially Stabilized Zirconia”, J. Am. Ceram. Soc., 59 [3-4] 179-182 (1976).
16. N. Claussen, J. Steeb. And R. F. Pabst, J. Am. Ceram. Soc. Bull. 56 [6] 559-62 (1977).
17. N. Claussen, R. L. Cox and J. S. Wallace,“Slow Growth of Microcracks:Evidence for One Type of ZrO2 Toughening”, J. Am. Ceram. Soc., 65 [11] C190-C191 (1982).
18. H. Tan and W. Yang,“Toughening Mechanicisms of Nano-Composite Ceramics”, Mech. Mater. , V30, 111-123(1998).
19. A. Hideo, S. M. Choi and E. Yagi,“Mechanisms of Toughening and Strengthening in Ceramic-Based Nanocomposites ”, Mech. Mater. V34. 411-422 (2002).
20. H. H. Pan and G. J. Weng,“A Micromechanics Theory for the Transformation Toughening of Two-Phase Ceramics”, Acta Metall., V156, 47-62 (2002).
21. E. B. Shand, Engineering Glass, Modern Materials, V6. Academic Press, New York, P262 (1968).
22. N. Claussen,“Fracture Toughness of Al2O3 with an Unstabilized ZrO2 Dispersed Phase”, J. Am. Ceram. Soc., 59, 49-51 (1976).
23. N. A. Travizky and N. Claussen, Advance in Ceramics V24B, Science and Techno- logy of Zirconia Ⅲ, edited by S. Somiya, Am. Ceram. Soc., p.121(1988).
24. K. Tsukuma, Am. Ceram. Soc. Bull. 65〕1386 (1986).
25. F. F. Lange, “Fracture Energy and Strength Behavior of a Sodium Borosilicate Glass-Al2O3 Composite System”, J. Am. Ceram. Soc. 54, 614-620 (1971).
26. F. F. Lange,“Transformation Toughening”, J. Mater. Sci., V17, 225-262(1982)
27. A. A. Griffith,“The Phenomenon of Rupture and Flaw in Solid”, Philos. Trans. R. Soc. Lond. Ser. A 22 [4] 13-40 (1920).
28. G. R. Irwin,“Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate”, J. APP. Mech., V24, 361-364 (1957).
29. H. M. Westergaad,“Bearing Pressures and Cracks”, J. App. Mech., V6. A49-53 (1939).
30. I. N. Sneddon,“The Distribution of Stress in the Neighborhood of a Crack in an Elastic Solid”, Proc. Roy. Soc. London, Series A, V187. 229-260 (1946).
31. G. R. Irwin, “ Fracture Mechanics”, Structure Mechanics, J. N. Goodier, and N. J. Hoff eds., Pergamon Press, New York, 557-591 (1960).
32. M. L. Williams, “On the Stress Distribution at the Base of a Stationary Crack”, ASME. J. APP. Mech. V24, 109-114 (1957).
33. Jr. Brown, W.F, ed.,“Review of Developments in Plane Strain Fracture Toughness Testing”, ASTM STP 463, (1970).
34. F. Erdogan, “ Stress Intensity Factors”, ASME. J. APP. Mech. V50, 992-1002 (1983)
35. Y. Murakami, S. Aoki, Stress Intensity Factors Handbook, Pergamon Press, New York, Oxford, V2(1987).
36. A. G. Evans, N. Burlingame, M. Drory and W. M. Kriven, “Martensitic Transformations in Zirconia Particle Size Effects and Toughening”, Acta Metall., 29, 447-56 (1981).
37. B. R. Lawn and T. R. Wilshaw, Fracture of Brittle Solids, Cambridge University Press, London (1975).
38. J. D. Eshelby, “ Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems”, Proc. R. Soc., London, Ser. A, 376-96 (1957).
39. J. R. Rice, “ Some Remarks on Elastic Crack-Tip Stress Fields”, Int. J. Solid Structure, 8 [2] 751-753 (1972).
40. P. C. Paris, R. M. McMeeking, and H. Tada,“The Weight Function Method For Determining Stress Itensity Factor”, Cracks and Fractures, ASTM STP 601, P471(1976).
41. P. C. Paris, H. Tada and G. R. Irwin, The Stress Analysis of Cracks Handbook, Del. Research, St. Louis, Mo., (1973).
42. J. R. Rice,“Mathematical Analysis in the Mechanics of Fracture”, In Fracture(Edited by H. Liebowitz), V2 Academic Press, New York, (1968).
43. J. W. Hutchinson,“On Steady Quasi-Static Crack Growth”, Harvard University Rep. Divi- sion of Applied Sciences, DEAPS-8, April.(1974).
44. B. Budiansky, J. W. Hutchinson and J. C. Lambropoulos,“Continuum Theory of Dilatant Transformation Toughening in Ceramics”, Int. J. Solids Structures, 19 [4] 337-355(1983).
45. R. N. Patil and E. C. Subbarao,“Axial Thermal Expansion of ZrO2 and HfO2 in the Range Room Temperature to 1400°C”, J. Appl. Cryst. V2 281-288(1969).
46. R. H. J. Hannink, “Growth Morphology of the Tetragonal Phase in Partially Stabilized ”, J. Mater. Sci., V13, 2487-2496(1978).
47. G. P. Tandon, G. J. Weng,“Average Stress in the Matrix and Effective Moduli of Randomly Oriented Composites”, Comp. Sci. Tech. [27] 111-132(1986).
48. T. Mura, Micromechanics of Defects in Solids, 2nd ed. Dordrecht Martinus Nijhoff (1987).
49. A. G. Evans, R. M. Cannon,“Toughening of Brittle Solids by Martensitic Trans- formations” Acta Metall. [34] 761-800(1986).
50. A. H. Heuer, “Transformation Toughening in ZrO2-Containing Ceramics”, J. Am. Ceram. Soc., V70, 689-98(1987).
51. J. R. Rice,“Three-Dimensional Elastic Crack Tip Interactions with Transforma- tion Strains and Dislocations”, Int. J. Solids. Struct. [21] 781-791(1985).
52. M. Matsui, T. Soma and I. Oda, “Effect of Microstructure on the Strength of Y-TZP Components”, Advances in Ceramics, V24B: Science and Technology of Zirconia Ⅲ, Edited by S. Sômiya, N. Yamamoto and H. Yanagida, Am. Ceram. Soc. P371-381(1981).
53. A. G. Evans and E. A. Charles.“Fracture Toughness Determinations by Indenta- tion”, J. Am. Ceram. Soc., 59 [7-8] 371-72(1976).
54. B. R. Lawn and D. B. Marshall,“Hardness, Toughness and Brittleness: An Inden- tation Analysis”, J. Am. Ceram. Soc., 62 [7-8] 347-350(1979).
55. G. R. Anstis, B. R. Lawn and D. B. Marshall,“A Critical Evaluation of Indentation Techni- ques for Measuring Fracture Toughness: I, Direct Crack Measurement”, J. Am. Ceram. Soc. 67 [10] E119-121(1984).
56. H. D. Toraya, M. S. Yoshimura and S. G. Somiya,“Calibration Curve for Quanti- tative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-Ray Diffraction”, J. Am. Ceram. Soc. 67 [10] C119-121(1984).
57. D. L. Porter and A. H. Heuer,“Microstructure Development in Mgo-Partially Stabilized Zirconia(Mg-PSZ)”Ceram. Soc., 62 [5-6] 298-304(1979).
58. Y. H. Sun, Y. F. Zhand and J. K. Guo,“Microstructure and Bending Strength Of 3Y-TZP Ceramics by Liquid-Phase Sintering with CAS Addition”, Ceramics International, [29] 299-232 (2003).
59. G. J. Weng,“Some Elastic Properties of Reinforced Solid, with Special Reference to Isotropic Ones Containing Spherical Inclusions”, Int. J. Engng. Sci.V22 [7] 845~856 (1984).
60. Z. Hashin and S. Shtrikman, “A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials ”, J. Mech. Phs. Solids, Vll, 127-140 (1963).
61. S .D. Skrovanek and R. C. Bradt,“ Microhardness of a Fine-Grain-Size Al2O3 ”, J. Am. Ceram. Soc., 62 [314] 215-6 (1979).
62. H. Ruf and A. G. Evans,“Toughening by Monoclinic Zirconia”, J. Am. Ceram. Soc. [66] 328-332 (1983).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top