(3.227.235.183) 您好!臺灣時間:2021/04/17 11:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳鴻國
研究生(外文):Hung-Kuo Chen
論文名稱:電漿噴流鍍膜系統內固-汽雙相流數值研究
論文名稱(外文):Three-Dimensional Solid-gas Flow and Deposition Process in a Plasma Jet: A Numerical Study
指導教授:葛自祥葛自祥引用關係
指導教授(外文):Tzu-Hsiang Ko
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:機械系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:80
中文關鍵詞:固-汽雙相流沉積現象電漿紊流撞擊速度
外文關鍵詞:solid-gas flowdeposition processplasmaturbulent flowimpact velocity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:129
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用數值方法探討電漿噴流鍍膜系統內之流場及鍍膜粒子之沉積現象。主要分為二部分,第一部分為電漿系統內固-汽雙相恆溫流場及固體微粒在基板上之沉積現象的分析,在此部分探討多項參數對噴流鍍膜效應之影響,所考量的方法有軸向與側向噴流流體的速度比、側向噴流的位置、固體微粒直徑和固體微粒密度、不同之擴張角及基板傾斜角等。研究結果發現,這些參數的粒子在基板上沉積的效率、沉積不均勻度及基板上的平均撞擊速度等皆有重大之影響。
第二部分則探討熱電漿系統中之流場及鍍膜現象,重點則在於探討擴張角及基板傾斜角對於電漿鍍膜系統基板上之的融化物質濃度比率、不均勻度及撞擊速度進行深入探討。本研究之成果除針對熱電漿噴流鍍膜系統內流場及粒子沉積現象,提供深入之探討外,亦提供實際工作者之參考,有助於確定最佳之操作條件,以達成最好的鍍膜效果與品質。
In this research use value method discussion plasma jet coating system deposition phenomenon flow field and coating particles. Mainly divides into two parts, first part for isothermal solid-gas flow and deposition process in a plasma jet system and solid particle on substrate deposition phenomenon analysis, discusses many parameters in this part to influence the plasma jet coating effect, considers the method has axial and the lateral jet fluid velocity ratio, the lateral jet position, the solid particle diameter and the solid particle density, different diffuser angle and the substrate spray angle and so on. The findings discovered that, these parameters are the efficiency, the distribution non-uniformity on the substrate and average impacting velocity on the substrate and so on all have the significant influence.
The second part discusses in the thermo plasma system the flow field and the coating phenomenon, In the discussion with emphasis diffuser angle and the substrate spray angle regarding the deposition process in a plasma jet coating system on the melting material concentration ratio, distribution non-uniformity and the melting material average impact velocity on the thorough discussion. Achievement of the this research except aims at in the thermo plasma jet coating system the flow field and the particles deposition phenomenon, provides penetrates outside the discussion, also provides reference the actual worker, is helpful to the determination best operating condition, achieves the best coating effect and the quality.
目錄
一、緒論……………………………………………………………………1
1.1 概說……………………………………………………………………1
1.2 文獻回顧………………………………………………………………2
1.3 本文研究內容…………………………………………………………3
二、物理模式與理論分析…………………………………………………5
2.1具固體防護罩電漿噴流鍍膜系統之物理模型………………………5
2.2流場之基本假設及統御方程式………………………………………6
2.3紊流模式………………………………………………………………7
2.3.1 基本線性模式………………………………………………………8
2.3.2 二次(quadratic) 模式……………………………………………8
2.3.3 標準型 模式………………………………………………………10
2.3.4 RNG 模式....……………………………………………………11
2.4熱輻射模式……………………………………………………………12
2.5雙相流及粒子運動方程式……………………………………………12
2.5.1 粒子動量方程式…………………………………………………12
2.6邊界條件………………………………………………………………13
三、數值方法……………………………………………………………15
3.1數值模擬分析…………………………………………………………15
3.2 SIMPLEC 演算法則…………………………………………………15
3.3鬆弛係數與收斂標準…………………………………………………18
3.3.1鬆弛係數……………………………………………………………18
3.3.2收斂標準……………………………………………………………19
四、結果與討論…………………………………………………………20
4.1紊流模式之選用………………………………………………………20
4.1.1 固-液雙相流之水平管之實驗比較………………………………20
4.1.2 固-液雙相流之垂直管之實驗比較………………………………20
4.1.3 固-氣雙相流突張管之實驗值比較………………………………21
4.1.4 紊流模式選用結論…………………………………………………21
4.2 恆溫具固體防護罩電漿鍍膜系統……………………………………21
4.2.1 計算結果與實驗值之比較…………………………………………21
4.2.2 格點獨立性測試及粒子獨立測試…………………………………22
4.2.3 恆溫大氣電漿與具固體防護罩電漿鍍膜系統之比較……………22
4.2.4 速度比率影響恆溫電漿鍍膜系統沉積之分析……………………23
4.2.5 粒子運載氣體注射位置對恆溫電漿鍍膜系統沉積之影響分析…24
4.2.6 粒子尺寸影響恆溫電漿鍍膜系統沉積之分析……………………25
4.2.7 粒子密度對恆溫電漿鍍膜系統沉積影響之分析…………………25
4.2.8 對參數影響探討之整體鍍膜沉積效能的評估……………………26
4.2.9 不同擴張角於具固體防護罩恆溫電漿鍍膜系統之比較…………26
4.2.10不同基板傾斜角於具固體防護罩恆溫電漿鍍膜系統之比較……29
4.3 具固體防護罩之熱電漿噴流鍍膜系統分析…………………………31
4.3.1格點獨立性測試………………………………………………………31
4.3.2 計算結果與實驗值之比較…………………………………………31
4.3.3 具固體防護罩之熱電漿噴流鍍膜系統於不同擴張角之分析……32
4.3.4 具固體防護罩之熱電漿噴流鍍膜系統於不同基板傾斜角之分析…35
五、結論與未來建議………………………………………………………37
5.1結論……………………………………………………………………37
5.2未來建議………………………………………………………………39
參考文獻
[1] Njah, Z., Mostaghimi, Boulos, M., “Computer simulations and experimental results in studies of plasma dynamics during the impulse plasma deposition process”, Int. J. Heat Mass Transfer 36 (1993) 3909.
[2] Leylavergne, M., Dussoubs, B., Vardelle, A., Goubot, “Cast iron substrates reclamation by tape casting of NiCu treated by plasma transferred arc: optimization of the tape and its plasma treatment “, J. Therm. Spray Technol. 7 (1998) 527.
[3] Fauchais, P.; Vardelle, A.; Denoirjean, A., J. Reactive thermal plasmas: ultrafine particle synthesis and coating deposition Surface and Coatings Technology Vol.97, Issue: 1-3, December, (1997), 66.
[4] Freton, P., Gonzalez, J. J., Gleizes, A., “On the thermodynamic origin of energy principles in plasma physics “, J. Phys. D:Appl. Pkys. 33 (2000) 2442.
[5] Ahmed, I., Bergman, T. L., “Plasma transport in curvilinear magnetic channels “, ASME J. Heat Transfer Vol.123 (2001), 452.
[6] Li, H. P., Chen, X., “Three-dimensional flow and heat transfer in thermal plasma systems”Surface and Coatings Technology Vol.171(2002), 124.
[7] Li, H. P., Chen, X., “Hydrogen molecular ions in quantum wells”, J. Thin Solid Films 390 (2001) 175.
[8] Li, H. P., Chen, X., “The reactive thermal conductivity for a two-temperature plasma”,Int. J. Heat and Mass Transfer, Vol. 46(2003), 1443.
[9] Li, H. P., Chen, X., “Two-temperature modeling of laser sustained hydrogen plasmas”, J. Plasma Chem. Plasma Process. 22 (2002), 482.
[10] Liu, B., Zhang, T., Gawne D. T., “Computational analysis of the influence of process parameters on the flow field of a plasma jet”, Surface and Coatings Technology 132 (2000) 202.
[11] Zhang, T., Gawne, D. T., Liu, B., “Computer modeling of the influence of process parameters on the heating and acceleration of particles during plasma spraying”, Surface and Coatings Technology 132 (2000) 233.
[12] Gawne, D. T., Zhang, T., Liu, B., “Computational analysis of the influence of a substrate, solid shield and gas shroud on the folw field of a plasma jet”, Surface and Coatings Technology 153 (2002) 138.
[13] Montavon, G., Sampath, S., Berndt, C.C., Herman, H., Coddet, C., “Effects of the spray angle on splat morphology during thermal spraying”, Surface and Coatings Technology 91 (1997) 107.
[14] Comer, J. K. ,Kleinstreuer, C., Kim, C. S. “Computational analysis of convection heat transfer to non-spherical particles”, J. Fluid Mech. 435 (2001) 55.
[15] Zhang, Z., Kleinstreuer, C. , Kim, C. S.,” Gas—solid two-phase flow in a triple bifurcation lung airway model”, Int. J. Multiphase Flow 28 (2002) 1021.
[16] Kleinstreuer, C., Zhang, Z.,”Laminar-to-turbulent fluid-particle flows in a human airway model”, Int. J. Multiphase Flow 29 (2003) 271.
[17] Lockwood, F.C., and Shah, N.G. “A niw radiation solution method for incorporation in general combustion prediction procedures”, Proc. 18th Symp. (Int.), (1981).
[18] Launder, B. E., and Spalding, D. B., “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3 (1974), 269.
[19] Yakhot, V., Orszag,S.A. Thangam, S, Gatski, T.B., and Speziale, C.G..”Development of turbulence models for shear flows by a double expansion technique”, Phys. Fluids, A4, No.7(1992), 1510.
[20] L. M. Milne-Thompson, Theoretical Hydrodynamics, 5th edition, McMillan and Co., New York, (1968).
[21] Van Doormaal, J. P., Raithby, G. D., “Enhancements of the SIMPLE Method for Predicting Incompressible Fluids Flows”, Numerical Heat Transfer, VOL.7(1984), 147.
[22] Yutaka T. and Yoshinobu M., “LDV measurements of an air-solid two-phase flow in a horizontal pipe,” J. Fluid Mech. Vol. 120(1982), 385.
[23] Yutaka T., Yoshinobu M. and Hiroshi S., “LDV measurements of an air-solid two-phase flow in a vertical pipe,” J. Fluid Mech. Vol. 139(1984), 417.
[24] C.M. Liao, W.Y. Lin, L.X. Zhou, “Simulation of particle-fluid turbulence interaction in sudden-expansion,” Powder Technology 90 (1997), 29.
[25] Stieglmeier, M., Tropea, C., Weiser, N. and Nitsche, W.,”Experimental Investigation of the flow through axisymmetric expansion”, ASME, J. of Fluids Engineering, Vol. 111(1989), 464.
[26] Wang, A. B., Jow, S. P. and Lin, C. C., “Investigations of flow-field for sudden-expansion pipe with transverse side-flows”, Proceedings of the Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics, Vol. I(1994), 11.
[27] Ko T. H. and Chen H. K., “Three-Dimensional Isothermal Solid-gas Flow and Deposition Process in a Plasma Jet with Solid Shield: A Numerical Study”, Submitted to Surface and Coatings Technology (2004).
[28] M. F. Smith, R. Neiser, R. C. Dykhuizen, in S. Sampath and C. C. Berndt (eds.), Thermal Spray Industrial Application, ASM International, Materials Park, OH, USA, 1994, pp. 603-608.
[29] Montavon G., Sampath S., Berndt C. C., Herman H. and Coddet C., “Effects of the angle on splat morphology during thermal spraying”, Surface and Coatings Technology 91 (1997) 107-115.
[30] Vardelle, M., Vardelle, A., Fauchais, P. and Boulos M.I., “Plasma-Particle Momentum and Heat Transfer:Modelling and Measurements”, AIChE, J. VOL.29,No.2(1983), 236.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔