跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 16:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:古哲光
研究生(外文):Jer-Guang Gu
論文名稱:挖掘多權重及多重支持度關聯規則使用頻繁項目增長模式之研究
論文名稱(外文):Research on Mining Multi-Weights Supports Association Rules with Frequent Pattern Growth Algorithm
指導教授:楊振銘楊振銘引用關係
指導教授(外文):Cheng-Ming Yang
學位類別:碩士
校院名稱:立德管理學院
系所名稱:應用資訊研究所
學門:電算機學門
學類:電算機應用學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:41
中文關鍵詞:權重式多重支持度關聯規則關聯規則
外文關鍵詞:FP-Growth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0


近年來,由於資料量不斷的增加,因此在大型資料庫中挖掘商品間的關聯規則 (association rules),也逐漸的被受到重視。在過去挖掘商品間的關聯規則裡,大多將焦點放在商品的交易次數,而將商品利潤也考慮進去的演算法並不多,其中主要的缺點就是挖掘關聯規則所需的時間成本過高。
因此在本文裡提出了改善在挖掘商品次數及利潤之間關聯規則中時間效能上的新方法,將其方法稱為MWFP-Growth(Multi-Weights Supports Frequent Patterns Growth)。本文利用FP-Growth 演算法加以修改,並應用在權重式多重支持度關聯規則的挖掘裡,來有效改善多重支持度關聯規則中時間效能不彰的問題。



Recently years, it is important to mine item’s association rules from large database due
to increasing considerable quantity of data constantly. In the past Algorithm of mining
item’s association rules, most of those focus on times of trading count, but not profit. The
main defect of that Algorithm is not effective to mining. Therefore this reason, this program has to provide a new method for improving the rate of time between mining item’s times and profit, is called MWFP-Growth (Multi- Weights Support Frequent Patterns Growth). This program alters FP-Growth to be applied to Weight Algorithm Multiple Support frequent patterns growth. It is effective to improve the defect of the rate of time of the association rules.



中文摘要................................................................I
英文摘要.............................................................. II
誌謝..................................................................III
目錄...................................................................IV
圖目錄..................................................................V
表目錄.................................................................VI
第一章 緒論............................................................ 1
第一節 研究動機........................................................ 1
第二節 本文架構........................................................ 4
第二章 文獻探討........................................................ 5
第一節 資料挖掘概述.................................................... 5
第二節 關聯規則....................................................... 10
第三節 多重最小支持度關聯規則......................................... 12
第四節 權重式多重支持度關聯規則....................................... 18
第五節 頻繁項目增長模式基本定義....................................... 23
第三章 問題及方法..................................................... 28
第一節 多權重及多重支持度關聯規則使用頻繁項目增長模式定義............. 28
第二節 多權重及多重支持度關聯規則使用頻繁項目增長模式................. 29
第三節 多權重及多重支持度關聯規則使用頻繁項目增長模式演算法........... 34
第四章 實驗結果....................................................... 36
第一節 實驗介紹....................................................... 36
第二節 效能評估....................................................... 37
第五章 結論及未來展望................................................. 39
參考文獻.............................................................. 40



[1]. R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules in Large Databases,” proc. 20th Very Large Database Conf., Sept. 1994.
[2]. R. Agrawal, T. Imelinski and A. Swami, “Mining Association Rules between Set of Itemset in Large Database,” Proc. ACM Special Interest Group on Management of Data (SIGMOD), May 1993.
[3]. R. Brin, R. Motwani, J. Ullman and S. Tsur, ”Dynamic Itemset Counting and
Implication Rules for Market Basket Data,” Proc. ACM Special Interest Group on
Management of Data (SIGMOD), 1997.
[4]. J. Han, M. Kamber, “Data Mining Concept and Techniques.” Morgan Kaufmann
Publishers, 2001.
[5]. J. Han, J. Pei, Y. Yin, “Mining frequent patterns without candidate generation”, Proc. 2000 ACM SIGMOD Int. Conf. on Management of Data, Dallas, TX, 2000.
[6]. Y. H. Hu, Y. L. Chen, “An efficient for discovering and maintenance of frequent patterns with multiple minimal supports”, 第十四屆國際資訊管理學術研討會, 2003.
[7]. IBM Quest data Mining Project, “Quest Synthetic Date Generation Code,”
“http://www.almaden.ibm. com/cs/quest/ syndata.html”, 1996.
[8]. B. Liu, W. Hsu and Y. Ma, “Mining Association Rules with Multiple Minimum
Supports”, Proc. ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp.337-341, 1999.
[9]. B. Liu, W Hsu, S. Chen, and Y. Ma, “Analyzing the Subjective Interestingness of Association Rules,” IEEE Intelligent Systems, Vol.15, No.5, pp. 47-55, May 2000.
[10]. J. S. Park, M. S. Chen, and P. S. Yu, “An Effective Hash Based Algorithm for Mining Association Rules,” Proc. ACM Special Interest Group on Management of Data (SIGMOD), pp. 175-186, May 1995.
[11]. M. Tseng, W. Lin, B. Chien, “Maintenance of Generalized Association Rules With Multiple Minimum Supports”, Proc. the 9th International Conference on International Fuzzy Systems Association World Congress, pp. 1294-1299, Jul., 2001
[12]. S.Y. Wur and Y. Leu, “An Effective Boolean Algorithm for Mining AssociationRule in Large Database,” Proc. 6th Data Systems for Advanced ApplicationsConf., pp.179-186, April 19-22, 1999.
[13]. D. L. Yang, C. T. Pan and Y. C. Chung, “An Efficient Hash-Bashed Method for Discovering the Maximal Frequent Set,” proc. Computer Software and Applications Conference, pp.511-516 Oct. 2001.
[14]. 楊振銘、何維翰,“權重式多重支持度關聯規則於大型資料庫挖掘之研究”, 第
十四屆國際資訊管理學術研討會, 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top