|
[1]R. A. Wagner, and M. J. Fischer. The string-to-string correction problem. Journal of the ACM, 21(1):168-173, 1974. [2]D. Sankoff, and J. B. Kruskal (eds.). Time Warps, String Edits, and Macromolecules, The Theory and Practice of Sequence Comparison. Addison-Wesley, 1983. [3]J. Modelevsky. Computer applications in applied genetic engineering. Advances in Applied Microbiology, 30:169-195, 1984. [4]A. Apostolico, M. Atallah, L. Larmore, and S. Mcfaddin. Efficient parallel algorithms for string editing and related problems. SIAM Journal on Computing, 19:968-988, 1990. [5]D. Gusfield. Algorithms on Strings, Trees and Sequences, Cambridge University Press, New York, 1997. [6]A. V. Aho, D. S. Hirschberg, and J. D. Ullman. Bounds on the complexity of longest common subsequence problem, Journal of the ACM, 23(1):1-12, 1976. [7]D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences. Communications of the ACM, 18 (6):341-343, 1975. [8]J.W. Hunt, and T. G. Szymanski. A fast algorithm for Computing Longest Common Subsequences, Communications of the ACM, 20(5):350-353, 1977. [9]W. J. Hsu, and M. W. Du. New algorithms for the LCS problem, Journal of Computers and System Sciences, 29:133-152, 1984. [10]A. Apostolico, and C. Guerra. The longest common subsequence problem revisited. Algorithmica. 18(1):315-336, 1987. [11]S. Kuo, and G. R. Cross. An improved algorithm to find the length of the longest common subsequence of two strings. ACM SIGIR Forum, 23(3-4):89-99, 1989. [12]S. Wu, U. Manber, G. Myers, and W. Miller. An O(NP) sequence comparison algorithm. Information Processing Letters, 35:317-323, 1990. [13]C. Rick. A new flexible algorithm for the longest common subsequence problem. In Proc. of the 5rd Combinatorial Pattern Matching, pages 340-351, LNCS 937, 1995. [14]N. Nakatsu, Y. Kambayashi and S. Yajima. A Longest Common Subsequence Algorithm Suitable for Similar Text Strings, Informatica, 18, 1982 [15]W. Miller and E. W. Myers. A File Comparision Program, Softw Pract. Exp., 15(11): 1025-1040, 1985. [16]M. Paterson, and V. Dancik. Longest common subsequences. In Proc. of the 19th Mathematical Foundations of Computer Science (MFCS), pages 127-142, LNCS 841, 1994. [17]L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence algorithms. SPIRE’2000, pages 39-48, 2000. [18]M. Crochemore, C. S. Iliopoulls, Y. J. Ponzon and J. F. Reid, A fast and practical bit-vector algorithm for the longest common subsequence problem, Information Processing Letters, 80, 279-285, 2001. (2001) [19]E. Myers. A Fast Bit-Vector Algorithm for Approximate String Matching based on Dynamic Programming, J.Assoc. Comput. Mach., 46(3):395-415 ,1999 [20]L. Allison and T. L. Dix, A bit-string longest common subsequence algorithm, Inform. Process. Lett., 23, 305-310, 1986 [21]R.A. Baeza-Yates and G.H. Gonnet, A new approach to text searching, Comm. Assoc. Comput. Match., 35, 74-82, 1992. [22]S. Wu and U. Manber, Fast text searching allowing errors, Comm. Assoc. Comput. Mach., 35, 83-91, 1992. [23]R. A. Baeza-Yates and G. Navarro, A fast algorithm for approximate string matching, Proceedings of the 7th Symp. On Combinatorial Pattern Matching, LNCS 1075, 1-23, 1996. [24]M. Lu, and H. Lin. Parallel algorithm for the longest common subsequence problem. IEEE Transaction on Parallel and Distributed Systems, 5(8): 835-848, 1994. [25]Z. Galil, and K. Park. Dynamic programming with convexity, concavity and sparsity. Theoretical Computer Science 92(1):49-76, 1992. [26]J.E. Myoupo, and D. Seme. Time-Efficient Parallel Algorithms for the Longest Common Subsequence and Related Problems. Journal of Parallel and Distributed Computing, 57:212-223, 1999. [27]L. Valiant. A bridging model for parallel computation. Communication of the ACM, 33(8):103-111, 1990. [28]F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel geometric algorithms for Coarse Grained Multicomputers. In Proc. ACM 9th Annual Computational Geometry, pages 298-307, 1993. [29]F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel computational geometry for Coarse Grained Multicomputers. International Journal on Computational Geometry, 3:379-400, 1996. [30]C. E. R. Alves, E. N. Cáceres, and F. Dehne. Parallel dynamic programming for solving the string editing problem on CGM/BSP. In Proc. ACM Symp on Parallel Algorithms and Architectures SPAA, 2002. [31]C. E. R. Alves, E. N. Cáceres, F. Dehne, and S. W. Song, Gramado-RS, Brazil. A CGM/BSP parallel similarity algorithm, October, 2002. [32]C. E. R. Alves, E. N. Cáceres, and S.W. Song. A BSP/CGM algorithm for the all-substrings longest common subsequence problem. In Proc. of the International Parallel and Distributed Processing Symposium, IPDPS’03, 2003. [33]T. Garcia, J-F. Myoupo, and D. Seme. A Coarse-Grained Multicomputer Algorithm for the Longest Common Subsequence Problem. Eleventh Euromicro Conference on Parallel, Distributed and Network-Based Processing, pages 349, 256, LNCS 2668, 2003. [34]S. B. Needleman, and C. D. Wunsch. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48:443-453, 1970. [35]D. S. Hirschberg. Algorithms for the longest common sequence problem. Journal of the ACM, 24(4):664-675, 1977. [36]C. E. R. Alves, E. N. Cáceres, F. Dehne, and S.W. Song. A parallel wavefront Algorithm for efficient biological sequence. Intl Conf on Computational Science and its Applications (ICCSA), 2003. [37]T. Jiang and M. Li, On the approximation of shortest sommon supersequences and longest common subsequences, SIAM J on Computing, 24(5), 1122-1139, 1995. [38]P. Barone, P. Bonizzoni, G. D. Vedova and G. Mauri, An Approximation Algorithm for the Shortest Common Supersequence Problem: An Experimental Analysis, Proc. of the ACM symposium on Applied computing, 2001, pages 56-60. [39]Y. T. Tsai and J. T. Hsu. An Approximation Algorithm for Multiple Longest Common Subsequence Problem, 2001. [40]D. Corne, M. Dorigo, and F. Glover (eds.), New Ideas in Optimization. New York: McGraw-Hill, pp. 11–32 [41]Colorni, M. Dorigo and V. Maniezzo, Distributed optimization by ant colonies. In: Varela F, Bourgine P, eds. Proc. of the ECAL''91 European Conf. of Artificial Life. Paris: Elsevier, 1991. 134~144. [42]M. Dorigo, Optimization, learning and natural algorithms. Ph.D.Thesis, Politecnico di Milano, Italy, 1992 [43]M. Dorigo and L. M. Gambardella, Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem, IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, 1997 [44]M. Dorigo and L. M. Gambardella, Ant colonies for the traveling salesman problem, BioSystems, Vol. 43, 1997b, pp. 73-81. [45]D. Costa and A. Hertz, Ant can color graph. Journal of the Operational Research Society, 48:295-305, 1997 [46]Maniezzo and Colorni, The ant system applied to the quadratic assignment problem, IEEE Transactions on Knowledge and Data Engineering, 11(5):2063-2070 , 1999 [47]S. J. Shyu, P. Y. Yin, B. M. T. Lin and M. Haouari, Ant-Tree: An Ant Colony Optimization approach to the generalized minimum spanning tree problem, Journal of Experimental and Theoretical Artificial Intelligence, 15(1):103-112, 2003 [48]L. M. Gambardella and M. Dorigo, Ant Colony System hybridized with a new local search for the sequential ordering problem. INFORMS Journal on Computing, 3:237-255, 2000 [49]G. Di Caro and M. Dorigo, Mobile agents for adaptive routing, Proceedings of the 31st Hawaii International Conference on System, IEEE Computer Society Press, Los Alamitos, CA, pages 74-83, 1998. [50]A. Bauer, B. Bullnheimer, R. F. Hartl and C. Strauß, An Ant Colony Optimization Approach for the Single Machine Total Tardiness Problem, Proceedings of the Congress on Evolutionary Computation, 1999 [51]L.M. Gambardella, E. D. Taillard and G. Agazzi, MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows, In: D. Corne, M. Dorigo, F. Glover (Eds.), New Ideas in Optimization, McGraw-Hill, London, UK, pages 63-76, 1999. [52]V. K. Jayaraman, B. D. Kulkarni, S. Karale and P. Shelokar, Ant colony framework for optimal design and scheduling of batch plants, Computers and Chemical Engineering, 24:1901-1912, 2000 [53]P. R. McMullen, An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives, Articial Intelligence in Engineering, 15(3):309-317, 2001 [54]V. T''kindt, N. Monmarche, F. Tercinet and D. Laugt, An Ant colony Optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem, European Journal of Operational Research, 142(2):250-257, 2002 [55]D. Merkle, M. Middendorf and H. Schmeck, Ant Colony Optimization for Resource-Constrained Project Scheduling. IEEE Trans. On Evolutionary Comput.,6(4):333-346 , 2002 [56]V. Maniezzo and A. Carbonaro, Ant Colony Optimization: An Overview, CiteSeer, 1999 [57]G. N. Varela and M. C. Sinclair, Ant colony optimization for virtual-wavelength-path routing and wavelength allocation, Proceedings Of the Congress on Evolutionary Computation (CEC’99), Washington DC, USA, July 1999. [58]M. Dorigo, G. D. Caro and L. M. Gambardella, Ant Algorithm for Discrete Optimization, Artificial Life 5: 137-172, 1999 [59]A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, PVM- Parallel Virtual Machine A Users Guide and Tutorial for Networked Parallel Computing. The MIT Press Cambridge, Massachusetts London, England, 1994 [60]Y. C. Lin and J. W. Yeh, A Scalable and Efficient Systolic Algorithm for the Longest Common Subsequence Problem, 2002 [61]R. W. Irving and C. B. Fraser, Two algorithms for the longest common subsequence of three (or more) strings, Lecture Notes in Computer Science 644, Springer Verlag, pp.214-229, 1992. [62]K. Hakata and H. Imai, The longest common subsequence problem for small alphabet size between many strings, Lecture Notes in Computer Science 650, Springer Verlag, pp.469-478, 1992.
|