跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/02/29 23:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林姿卿
研究生(外文):Lin, Tzy Ching
論文名稱:探討藥物引發制約反應之神經行為機制
論文名稱(外文):Investigation of the neurobehavioral mechanisms underlying psychoactive drug induced conditioned response
指導教授:廖瑞銘廖瑞銘引用關係
指導教授(外文):Liao, Ruey Ming
學位類別:碩士
校院名稱:國立政治大學
系所名稱:心理學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:93
中文關鍵詞:心理藥物學安非他命制約場地偏好制約活動元素理論整體理論大白鼠
外文關鍵詞:psychopharmacologyamphetamineconditioned place preferenceconditioned locomotionelemental theoryconfigural theoryrat
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1


本研究藉由測量制約場地偏好行為及制約活動量兩種制約反應,透過制約期及後測期對藥物配對刺激之操弄,探討制約刺激與酬賞性藥物配對之歷程及其相關之神經機制。本文所使用的為低劑量(1.5 mg/kg)之安非他命,採腹腔注射方式給藥。實驗一探討後測日呈現不同的藥物配對刺激組合對兩種制約反應之影響效果,實驗結果發現受試只對與藥物配對過的兩個以上元素刺激同時出現才能引發受試表現制約場地偏好,且受試對複合刺激的活動量皆顯著高於對單一元素刺激的活動量。實驗二在制約期分別將視覺刺激與觸覺刺激與藥物配對,後測期於藥物配對箱單獨呈現視覺刺激或兩者所組成的複合刺激,測量受試兩種制約反應。實驗結果發現視覺刺激與複合刺激皆能引發制約場地偏好,受試對複合刺激的活動量亦高於對視覺刺激的活動量。實驗三則是於制約前分別破壞受試之杏仁核、背側海馬或腹側海馬,並進行實驗二之制約實驗程序。結果發現破壞杏仁核顯著的減抑單一元素刺激所引發之制約場地偏好,但不影響複合刺激引發之制約場地偏好。破壞背側海馬及腹側海馬減抑複合刺激引發之制約場地偏好。但在制約活動量表現方面,這三個腦組織均未獲得較一致性的結果。總而言之,本研究得到制約刺激之連結強度確實可以透過制約場地偏好及制約活動量反映出差異,且結果支持Rescorla-Wagner元素理論對制約刺激與非制約刺激配對歷程之假設。由破壞杏仁核及海馬對受試表現制約場地偏好造成不等程度之影響,可見杏仁核與海馬所參與以藥物配對的制約之行為功能不同。
關鍵字:心理藥物學,安非他命,制約場地偏好,制約活動,元素理論,整體理論,大白鼠



By measuring of conditioned place preference (CPP) and conditioned locomotion, the present study manipulated various patterns of environment by composing three different contextual stimuli in the test chamber during different stages of conditioning to investigate behavioral processing and neural mechanisms underlying the association of conditioned stimulus and psychoactive drug. A relatively low dose of amphetamine (1.5 mg/kg) administered via intraperitoneal route was conducted as drug treatment throughout the study. In Experiment 1, the effects of CPP and conditioned locomotion were evaluated as different patterns of contextual stimuli composed in the test chamber presented during post-conditioning stage. The results showed CPP was significantly induced in the environment with context stimuli composed by at least two elements. And, the magnitude of conditioned locomotion induced by compound stimulus was higher than that induced by a single elemental stimulus. In Experiment 2, the effects of CPP and conditioned locomotion induced by a two-element compound stimulus were evaluated in the subjects received the drug pairing with both of each element stimulus in separate during the conditioning stage. The CPP was reliable induced by that compound stimulus. Although such CPP effect could also induced by an elemental stimulus specifically regarding to visual modality, it was not true for the other elemental stimulus manipulated on tactual modality. In Experiment 3, behavioral effects tested on the procedures of Experiment 2 were re-evaluated in the subjects received neurotoxic lesions in the amygdala, the dorsal hippocampus, or the ventral hippocampus before conditioning. While amygdaloid lesion significantly attenuated the CPP induced by elemental stimulus, such lesion did not inhibit the CPP induced by the compound stimulus. Lesions on those two hippocampal subareas disrupted the formation of CPP induced by compound stimulus. Regarding the conditioned locomotion, in contrast to what found on CPP, lesion treatment did not produce reliable effect induced by compound stimulus or elemental stimulus. In conclusion, the present findings on two conditioned responses measured support the assumption of Rescorla-Wagner Model on elemental theory. The lesion data indicate that amygdala and hippocampus are differentially involved in conditioned responses induced by psychoactive drug.
Key words: psychopharmacology, amphetamine, conditioned place preference, conditioned locomotion, elemental theory, configural theory, rat.



中文摘要..................................................1
英文摘要..................................................2
第一章 研究背景..........................................3
一、引言...............................................3
二、制約場地偏好.......................................4
(一)制約場地偏好中制約刺激的定義....................4
(二)藥物引發制約場地偏好的實驗程序..................5
(三)制約反應........................................6
三、制約場地偏好之區辨學習.............................7
四、制約刺激之可能處理歷程.............................8
(一)Rescorla-Wagner元素理論.........................8
(二)整體理論........................................11
五、制約刺激處理之相關神經機制.........................13
(一)簡單連結系統及整體連結系統......................14
(二)元素處理系統及整體處理系統......................15
(三)杏仁核與海馬在制約場地偏好行為所扮演的角色......17
六、研究問題............................................18
第二章 研究方法...........................................21
受試...................................................21
藥物...................................................21
儀器...................................................21
(一)制約場地偏好箱..................................21
(二)自發活動記錄儀器................................22
藥物引發制約場地偏好程序...............................22
制約活動量測試程序.....................................23
統計分析...............................................23
第三章 實驗一.............................................25
實驗一A步驟...........................................27
實驗一A結果...........................................28
實驗一B步驟............................................30
實驗一B結果............................................31
第四章 實驗二.............................................34
實驗二A步驟...........................................35
實驗二A結果...........................................36
實驗二B步驟...........................................37
實驗二B結果...........................................37
第五章 實驗三.............................................39
實驗三A步驟...........................................40
實驗三A結果...........................................41
實驗三B步驟...........................................43
實驗三B結果...........................................44
第六章 綜合討論...........................................46
參考文獻...................................................57
附圖註解...................................................66
表目錄
表一:實驗一對各刺激連結強度之預期..........................27
表二:實驗一A實驗設計與程序簡表............................28
表三:實驗一B實驗設計與程序簡表............................31
表四:實驗二對各刺激連結強度之預期 .........................35
表五:實驗二A實驗設計與程序簡表............................36
表六:實驗二B實驗設計與程序簡表............................37
表七:三個腦區塊之座標......................................41
圖目錄
圖一:實驗一A後測日呈現藥物配對刺激及其單一元素刺激引發之制約場地偏好。
圖二:實驗一A後測日呈現藥物配對刺激及其兩元素刺激組成之複合刺激所引發之制約場地偏好。
圖三:實驗一B後測日呈現藥物配對刺激及其單一元素刺激引發之制約活動量。
圖四:實驗一B後測日呈現藥物配對刺激及其兩元素刺激組成之複合刺激引發之制約活動量。
圖五:實驗二A後測日呈現與藥物配對之元素刺激及與另一元素刺激組合之複合刺激所引發之制約場地偏好。
圖六:實驗二B後測日呈現與藥物配對之元素刺激及與另一元素刺激組合之複合刺激所引發之制約活動量。
圖七:實驗三A破壞杏仁核對後測日呈現與藥物配對之元素刺激及與另一元素刺激組合之複合刺激所引發之制約場地偏好。
圖八:實驗三A破壞背側海馬對後測日呈現與藥物配對之元素刺激及與另一元素刺激組合之複合刺激所引發之制約場地偏好。
圖九:實驗三A破壞腹側海馬對後測日呈現與藥物配對之元素刺激及與另一元素刺激組合之複合刺激所引發之制約場地偏好。
圖十:實驗三B破壞杏仁核對後測日呈現與藥物配對之元素刺激及與另一元素刺激組合之複合刺激所引發之制約活動量。
圖十一:實驗三B破壞背側海馬對後測日呈現與藥物配對之元素刺激及與另一元素刺激組合之複合刺激所引發之制約活動量。
圖十二:實驗三B破壞腹側海馬對後測日呈現與藥物配對之元素刺激及與另一元素刺激組合之複合刺激所引發之制約活動量。
圖十三:實驗三神經毒素ibotenic acid破壞杏仁核之組織學檢驗結果。
圖十四:實驗三神經毒素ibotenic acid破壞背側海馬之組織學檢驗結果。
圖十五:實驗三神經毒素ibotenic acid破壞腹側海馬之組織學檢驗結果。



林星宏 (1999). 以學習記憶的取向探討安非他命引發地點偏好之神經機制。國立台灣大學心理學研究所碩士論文。
洪菁穗 (2000). 探討藥物酬賞引發制約性場地偏好行為的學習歷程。行政院國家科學委員會大專學生參與專題研究計畫成果報告。計畫編號:NSC88-2815-C- 004-008-H。
Alheid, G. F., de Olmos J. S., & Beltramino C. A. (1992). Amygdala and extended amygdala in Paxinos G (ed), The Rat Nervous System, 2nd Ed. New York, Academic Press, 495-572.
Anagnostaras, S. G., Maren S., & Fanselow M. S. (1999). Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. Journal of Neuroscience, 19, 1106-1114.
Bardo, M. T., & Bevins R. A. (2000). Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology, 153, 31-43.
Blanchard, D. C., & Blanchard, R. J. (1969). Innate and conditioned reactions to threat in rats with amygdaloid lesions. Journal of Comparative Physiology and Psychology, 81, 281-290.
Blanchard, R. J., & Blanchard, D. C. (1969). Crouching as an index of fear. Journal of Comparative Physiology and Psychology, 67, 370-375.
Bolles, R. C., & Fanselow, M. S. (1980). A perceptural-defense- recuperative model of fear and pain. Behavioural and Brain Sciences, 3, 291-323.
Bouton, M. E., & Swartzentruber, D. (1986). Analysis of the associative and occasion-setting properties of contexts participating in a Pavlovian Discrimination. Journal of Exerperimental Psychology: Animal Behavior Processes, 12(4), 333-350.
Brown, E. E., & Fibiger, H. C. (1993). Differential effects of excitotoxic lesions of the amygdala on cocaine-induced conditioned locomotion and conditioned place preference. Psychopharmacology, 113, 123-130.
Bridger, W. H., Schiff S. R., Cooper S. S., Paredes W., & Barr G. A. (1982). Classical conditioning of cocaine’s stimulatory effects. Psychopharmacology Bulletin, 18, 210-214.
Cador, M., Robbins, T. W., & Everitt, B. J. (1989). Involvement of the amygdala in stimulus-reward associations: interaction with the ventral striatum. Neuroscience, 30(1), 77-86.
Calcagnetti, D. J., & Schechter, M. D. (1993). Extinction of cocaine-induced place preference in rats: A validation of the “biased” conditioning procedure. Brain Research Bulletin, 30, 695-700.
Carr, G. D., Phillips A. G., & Fibiger H. C. (1988). Independence of amphetamine reward from locomotor stimulation demonstrated by conditioned place preference. Psychopharmacology, 94, 221-226.
Davis, M. (1992). The role of the amygdala in conditioned fear. In Aggleton JP, (Ed. )The amygdala: neurological aspects of emotion, memory , and mental dysfunction(p.255-306). Chichester: Wiley.
Davidson, T., McKernan, M. G., & Jarrard, L. E. (1993). Hippocampal lesions do not impair negative patterning: A challenge to configural association theory. Behavioral Neuroscience, 107, 227-234.
Di Scala, G., Martin-Iverson M. T., Phillips A. G., & Fibiger H. C. (1985). The effects of progabide(SL 76002) on locomotor activity and conditioned place preference induced by d-amphetamine. European Journal of Pharmacology, 107, 271-274.
Estes, W. K. (1950). Toward a statistical theory of learning. Psychological Review, 57, 94-107.
Everitt, B. J., & Robbins T. W. (1992). Amygdala-Ventral Striatal interactions and reward-related processes. In Aggleton JP (Ed.). The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction. (p.401-430). New York, Wiley-Liss.
Fanselow, M. S. (1986). Associative vs. topographical accounts of the immediate shock freezing deficit in rats: implications for the response selection roles governing species specific defensive reactions. Learning and Motivation, 17, 16-39.
Fanselow, M. S. (1999). Learning theory and neuropsychology: Configuring their disparate elements in the hippocampus. Journal of Experimental Psychology: Animal Behavior Processes, 25(3), 275-283.
Fanselow, M. S. (2000). Contextual fear, gestalt memories, and the hippocampus. Behavioural Brain Research, 110, 73-81.
Ferbinteanu, J., & McDonald R. J. (2001). Dorsal/ventral hippocampus, fornix and conditioned place preference. Hippocampus, 11(2), 187-200.
Frankland, P. W., Cestari, V., Filipkowski, R. K., McDonald, R. J., & Silva, A. J. (1998). The dorsal hippocampus is essential for context discrimination but not for contextual conditioning. Behavior Neuroscience, 112, 863-874.
Fuchs, R. A., Weber, S. M., Rice, H. J., & Neisewander, J. L. (2002). Effects of excitotoxic lesions of the basolateral amygdala on cocaine-seeking behavior and cocaine conditioned place preference in rats. Brain Research, 929, 15-25.
Gallagher, M., Graham P. W., & Holland P. C. (1990). The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior. Journal of Neuroscience, 10, 1906-1911.
Good, M., & Honey R. C. (1991). Conditioning and contextual retrieval in hippocampal rats. Behavioral Neuroscience, 105, 499-509.
Gulliksen, H., & Wolfle, D. L. (1938). A theory of learning and transfer: I. Psychometrika, 3, 127-149.
Hara, K., & Warren, J. M. (1961). Stimulus additivity and dominance in discrimination performance by cats. Journal of Comparative Physiological Psychology, 54, 86-90.
Hiroi, N., & White N. M. (1991). The lateral nucleus of the amygdala mediates expression of the amphetamine-produced conditioned place preference. Journal of Neuroscience, 11(7), 2107-2116.
Holland, P. C., & Bouton, M. E. (1999). Hippocampus and context in classical conditioning. Current Opinion in Neurobiology, 9, 195-202.
Honey, R. C., & Watt, A. (1998). Acquired relational equivalence: implications for the nature of associative structures. Journal of Experimental Psychology: Animal Behavior Processes, 24(3), 325-334.
Honey, R. C., & Watt, A. (1999). Acquired relational equivalence between contexts and features. Journal of Experimental Psychology: Animal Behavior Processes, 25(3), 324-333.
Hsu, E. H., Schroeder, J. P., & Packard, M. G. (2002). The amygdala mediates memory consolidation for an amphetamine conditioned place preference. Behavioural Brain Research, 129, 93-100.
Hull, C. L. (1943). Principles of behavior. New York: Appleton- Century-Crofts.
Kim, J. J., & Fanselow M. S. (1992). Modality specific retrograde amnesia of fear following hippocampal lesions. Science, 256, 675-677.
Konorski, J. (1948). Conditioned reflexes and neuron organization. Cambridge: Cambridge University Press.
LeDoux, J. E. (1987). Emotion. In F. Plum (Ed.), Handbook of physiology: Sec. 1. The nervous system: vol.5. Higher functions of the brain. Bethesda, MD: American Physiological Society.
Maren, S., & Fanselow, M. S. (1996). The amygdala and fear conditioning: Has the nut been cracked? Neuron, 16, 237-240.
Martin-Iverson, M. T., & Reimer, A. R. (1996). Classically conditioned motor effects do not occur with cocaine in an unbiased conditioned place preferences procedure. Behavioural Pharmacology, 7, 304-314.
Martin-Iverson, M. T., Ortmann R., & Fibiger H. C. (1985). Place preference conditioning with methlphenidate and nomifensine. Brain Research, 332, 59-67.
McDonald, R. J., & White N. M. (1993). A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behavioral Neuroscience, 52, 621-636.
McGonigle, B. (1967). Stimulus additivity and dominance in visual discrimination performance by rats. Journal of Comparative Physiological Psychology, 64, 110-113.
O’Dell, L. E., Sussman, A. N., Meyer, K. L., & Neisewander, J. L. (1999). Behavioral effects of psychomotor stimulant infusions in to amygdaloid nuclei. Neuropsychopharmacology, 20(6), 591-602.
O’Keefe, J. (1983). Spatial memory within and without the hippocampal system. In W. Seifert (Ed.) Neurobiology of the hippocampus (pp. 375-405). New York: Academic Press.
Panlilio, L. V., & Schindler C. W. (1997). Conditioned locomotor —activating and reinforcing effects of discrete stimuli paired with intraperitoneal cocaine. Behavioural Pharmacology, 8, 691-698.
Pavlov, I. P. (1927). Conditioned reflexes.(G.V. Anrep, Trans.). London: Oxford University Press.
Paxinos, G., & Watson, C. (1986). The rat brain in stereotaxic coordinates. Australia: Academic Press.
Pearce, J. M. (1987). A model for stimulus generalization in Pavlovian conditioning. Psychological Review, 87, 532-552.
Pearce, J. M. (1994). Similarity and discrimination: A selective review and a connectionist model. Psychological Review, 101, 587-607.
Perkins, D. G. (1980). Classical conditioning: Pavlov. In Gazda, G.M & Corsini R.J.(Ed.).Theories of learning: A comparative approach.(p.29-64). Illinois: Peacock publishers.
Phillips, R. G., & LeDoux, J. E. (1992). Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience, 106(2), 274-285.
Pickens, R. W., & Crowder W. F. (1967). Effects of CS-US interval on conditioning of drug response, with assessment of speed of conditioning. Psychopharmacologia(Berlin), 11, 88-94.
Redhead, E. S., & Pearce, J. M. (1995). Similarity and discrimination learning . Quarterly Journal of Experimental Psychology, 48B, 46-66.
Rescorla, R. A. (1969). Pavlovian conditioned inhibition. Psychological Bulletin, 72, 77-94.
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (PP, 64-99). New York: Appleton-Century-Crofts.
Restle, F. (1955). A theory of discrimination learning. Psychological Review, 62, 11-19.
Romanski, L. M., & LeDoux, J. E. (1992). Equipotentiality of thalamoamygdala and thalamocorticoamygdala circuits in auditory fear conditioning. Journal of Neuroscience, 12, 4501-4509.
Ross, R. T., & Holland, P. C. (1981). Conditioning of simultaneous and serial feature-positive discriminations. Animal Learning and Behavior, 9, 293-303.
Rudy, J. W., & Sutherland, R. J. (1989). The hippocampal formation is necessary for rats to learn and remember configural discriminations. Behavioural Brain Research, 34, 97-109.
Salamone, J. D. (1994). The involvement of nucleus-accumbens dopamine in appetitive and aversive motivation. Behavioural Brain Research, 61, 117-133.
Skinner, D. M., & van der Kooy, D. (1997). Acquisition and retention of negative patterning in hippocampal-lesioned rats. Psychobioloby, 25, 10-17.
Spence, K. W. (1936). The nature of discrimination learning in animals. Psychological Review, 43, 427-449.
Spyraki, C., Fibiger H. C., & Phillips H. C. (1982). Cocaine-induced place preference conditioning: lack of effects of neuroleptics and 6-hydroxydopamine lesions. Brain Research, 253, 195-203.
Sutherland, R. J., & Mackintosh, N. J. (1971). Mechanisms of animal discrimination learning. New York: Academic Press.
Sutherland, R. J., & Rudy, J. W. (1989). Configural association theory: The role of the hippocampal formation in learning, memory, and amnesia. Psychobiology, 17(2), 129-144.
Swerdlow, N. R., & Koob G. F. (1984). Restrained rats learn amphetamine-conditioned locomotion, but not place preference. Psychopharmacology, 84, 163-166.
Toyomitsu, Y., Nishijo, H., Kuratsu, J., & Ono, T. (2002). Neuronal responses of the rat amygdala during extinction and reassociation learning in elementary and configural associative tasks. European Journal of Neuroscience, 15, 753-768.
Verzina, P., & Stewart, J. (1987). Conditioned locomotion and place preference elicited by tactile cues paired exclusively with morphine in an open field. Psychopharmacology, 91, 375-380.
Wagner, A. R., & Rescorla. R. A. (1972). Inhibition in Pavlovian conditioning: application of a theory. In R. A. Boakes and M. S. Halliday(Eds.), Inhibition and Learning. London: Academic Press, PP.301-306.
Weiss, S. J. (1964). Summation of response strengths instrumentally conditioned to stimuli in different sensory modalities. Journal of Experimental Psychology, 68, 151-155.
White, N. M. (1989). Reward or Reinforcement: what’s the difference. Neuroscience Biobehavioral Review, 13, 181-186.
Wise, R. A. (1989). The brain and reward. In J. M. Liebman & S. J. Cooper(Eds.). The neuropharmachological Basis of Reward. Oxford: Clarendon Press.
Woodbury, C. B. (1943). The learning of stimulus patterns by dogs. Journal of Comparative Psychology, 35, 29-40.
Young, P. T. (1959). The role of affective process in learning and motivation. Psychological Review, 66, 104-125.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top