(3.230.143.40) 您好!臺灣時間:2021/04/21 08:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張淞傑
研究生(外文):Sung-Chieh, Chang
論文名稱:應用流場可視化與PIV技術於孤立波通過潛堤周邊渦流流場之研究
論文名稱(外文):Study on the Characteristics of Vortices Generated Near a Submerged Obstacle by a Passing Over Solitary Wave
指導教授:林 呈
指導教授(外文):Chang, Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:160
中文關鍵詞:孤立波矩形潛堤流場可視化質點影像測速儀雷射誘導感光
外文關鍵詞:solitary waverectangular dikeflow visualizationPIVlaser induced fluorescence
相關次數:
  • 被引用被引用:11
  • 點閱點閱:122
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以先進之質點影像測速儀(PIV),配合雷射誘導感光(LIF)以及TiO2顆粒追蹤法兩種流場可視化方式,對於水深分別為7 cm與6 cm,入射波高為1.2 cm的情形下,孤立波通過潛沒矩形潛堤周邊渦流流場加以分析研究。
研究中,首先針對水深7 cm,波高1.2 cm之孤立波通過潛堤時周邊流場的不同區域,分別採用廣泛與局部微觀兩種分析方式加以觀察探討,使得流場中各個區域之特徵都得以清楚呈現;其中,以大區域觀察下游側主渦B以及其與周邊渦流之相關性,再以小區域分別探討潛堤上游端上方以及下游側堤腳處之渦流行為。
其次,針對波高不變,水深減少為6 cm時,利用定性之可視化相片與波高計、PIV等定量結果與水深7 cm者相互比較,以瞭解相同入射波高,不同水深下,孤立波通過潛堤時波速的變化以及潛堤周邊各渦流之渦心軌跡、渦流強度等特徵的不同。其結果顯示,隨著水深減少:(1)波速衰減由h0 = 7 cm時之1.61 %增加為h0 = 6 cm時之6.2 %,此現象有利於可提高潛堤消能效率,有效降低透射波浪之能量。(2)潛堤下游側之渦流B、C、D、B’與D’之渦心軌跡皆產生改變,其中又以渦流B在t = 0~1 sec時之軌跡往底床移動,渦流C軌跡整體往堤身平移,渦流D撞擊水面之位置向下游側移動以及渦流D’生成位置較為貼近水面而之後往堤身移動等情形較為明顯。(3) 除上游側渦流A以外,其餘各渦流之強度皆有增加,增加範圍則為0.2~1.2 sec-1不等。
A solitary wave with wave height H = 1.2 cm interacting with a bottom mounted rectangular dike which has a streamwise length of b = 6 cm and a vertical height of h = 3 cm in the water depth of h0 = 7 cm and 6 cm was studied experimentally. Particle image velocimetry (PIV) and two flow visualization techniques, including the laser induced fluorescence technique and the particle tracing technique were used for the experiments. The vortex shedding processes were identified using the two qualitative visualization techniques while detailed velocity field was measured quantitatively using PIV.
Four FOVS (field of views) were used to capture the vortices generated by flow separation near the dike in the water depth of h0 = 7 cm since the size of the vortices differ from each other largely. Large FOVS were used to observe the characteristics of the downstream main vortex B and the relationship between it and other vortices while small ones were used to investigate the details of the upstream separation zone and the downstream corner near the flume bottom.
Similar to the measurements in the water depth of h0 = 7 cm, flow visualization and velocity measurements were also conducted in the water depth of h0 = 6 cm and the results such as wave celerity, position of vortex core and vortex strength were compared. It shows that: (1)The wave celerity decreases more after passing over the dike when h0 = 6 cm which representes better energy dissipation effect. (2)Most of the positions of all vortices cores changes evidently as the water depth decreases except vortex A. (3)The vortex strengh increases for all vortices except the upstream vortex A in the range of 0.2~1.2 sec-1.
誌謝 I
中文摘要 II
英文摘要 III
表 目 錄 VI
圖 目 錄 VI
相片目錄 VIII
符號說明 XVI
第一章 緒論
1-1 研究動機 1
1-2 文獻回顧 3
1-3 本文組織架構 5
第二章 實驗設備佈置及分析方法
2-1 實驗水槽及模型佈置 7
2-1-1 波浪實驗水槽 7
2-1-2 實驗模型 7
2-1-3 實驗佈置 7
2-2 雙波高計量測實驗 9
2-3 流場可視化實驗 9
2-4 PIV量測實驗 13
2-5 PIV計算原理 16
第三章 初步實驗
3-1 孤立波波形檢測 20
3-2 孤立波波速檢測 20
3-3 反射波影響檢測 22
3-4 水分子速度檢測 22
第四章 結果與討論
4-1 水深7 cm,波高1.2 cm條件下孤立波通過潛沒矩形潛堤波
速之變化 26
4-2 水深7 cm,波高1.2 cm條件下孤立波通過潛沒矩形潛堤流
場分析 28
4-2-1 以拍攝區域R1、L1分析潛堤周邊各渦留在時間與空間上
的相關性 28
4-2-2 以拍攝區域L2分析潛堤下游側堤腳處渦流 86
4-2-3 以拍攝區域R2分析潛堤上游端上方渦流 86
4-3 改變水深條件對於孤立波通過潛堤周邊流場之影響 111
4-3-1 改變水深條件時,孤立波通過潛沒矩形潛堤波速
之變化 111
4-3-2 改變水深條件時,孤立波通過潛沒矩形潛堤周邊渦流流
場之變化 111
第五章 結論與建議
6-1 結論 125
6-2 建議 126
參考文獻
附錄
1.Francis C.K. Ting and Young-Ki Kim, 1994. “Vortex Generation in Water Waves Propagating Over a Submerged Obstacle,”Coastal Engineering, Vol. 31, pp.23-49.
2.Daily, J. W. and S. C. Stephan, Jr. (1953) “Characteristics of the solitary wave.” Trans. ASCE, vol.118.
3.Dean and Dalrymple (1984) “Water Wave Mechanics for Engineers and Scientists.”, pp. 314—318.
4.Dong, C. M. and C. J. Huang, 1999. “Vortex Generation in Water Waves Propagating over a Submerged Rectangular Dike,” Proc. 9th Int. Offshore and Polar Eng. Conf., III, pp. 388-395.
5.Goring, D. G. and F. Raichlen, 1980. “The Generation of Long Waves in the Laboratory,” Proc. 1 7t h Int. Conf. Coastal Eng., ASCE, pp. 763-783.
6.Goring, D. G. and F. Raichlen, 1990. “Propagation of Long Waves onto Shelf,” J. Waterway, Port, Coastal, and Ocean Eng. pp. 118, 43-61.
7.Grilli, S. T., R. Subramanya, I. A. Svendsen, and J. Veeramony, 1993. “Shoaling of Solitary Waves on Plane Beaches,” J. Waterway, Port, Coastal, and Ocean Eng. Vol. 120, pp. 609-628.
8.Grilli, S. T., M. A. Losada, and F. Martin, 1994. “Characteristics of Solitary Wave Breaking Induced by Breakwaters,” J. Waterway, Port, Coastal, and Ocean Eng., Vol. 120, pp. 74-92.
9.Huang, C. J., and C. M. Dong, 1999. “Wave Deformation and Vortex Generation in Water Waves Propagating over a Submerged Dike,” Coastal Eng., Vol. 37, pp. 123-148.
10.Huang, C.J. and C. M. Dong, 2001. “On the Interaction of a Solitary Wave and a Submerged Dike,” Coastal Eng., Vol. 43, pp. 265-286.
11.K. A., Chang, T. J., Hsu, and Philip L. —F. Liu, 2001“Vortex Generation and Evolution in Water Waves Propagating Over a Submerged Rectangular Obstacle Part I. Solitary waves,” Coastal Engineering, Vol. 44,pp. 13-36.
12.Losada, I. J., M. D. Patterson, and M. A. Losada, 1997. “Harmonic Generation Past a Submerged Porous Step,” Coastal Engineering, Vol. 31, pp.281-304.
13.McCowan, J. (1891) “On the highest wave of permanent type.”Lon, Edinburgh, and Dublin Phil. Mag. and J. Sci., vol. 38, 1894.
14.Madsen, O.S. and C. C. Mei, 1969. “The Transformation of a Solitary Wave over an Uneven Bottom,” J. Fluid Mech. Vol. 39, pp. 781-791.
15.Otta, A., I. A. Svendsen, and S. T. Grilli, 1992. “The Breaking and Run-up of Solitary Wave on Beaches,” Proc. 23rd Int. Conf. Coastal Eng., ASCE, pp. 1461-1474.
16.Seabra-Santos, F. J., D. P. Renouard, and A. M. Temperville, 1987. “Numerical and Experimental Study of the Transformation of a Solitary Wave over a Shelf or Isolated Obstacle,” J. Fluid Mech., Vol. 176, pp. 117-134.
17.Tang C. J. and J. H. Chang, 1998. “Flow Separation During Solitary Wave Passing over Submerged Obstacle,” J. Hydraul. Eng., Vol. 124, pp. 742-749.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔