跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 06:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃君偉
研究生(外文):Jun-Wei Huang
論文名稱:突堤對下游灘線長期變遷影響之數值模擬
論文名稱(外文):Numerical Simulations on Long-Term Shoreline Changes Downcoast of a Groin
指導教授:蔡清標蔡清標引用關係
指導教授(外文):Ching-Piao Tsai
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:71
中文關鍵詞:突堤數值模擬灘線變遷緩坡方程式有限差分法侵蝕
外文關鍵詞:groinnumerical simulationshoreline changemild-slope equationsfinite difference methoderosion
相關次數:
  • 被引用被引用:7
  • 點閱點閱:411
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:1
本研究係藉由數值模擬的方式,探討在波浪長期作用下,單一垂直於平直海岸之突堤對下游灘線侵蝕的影響。由相關的波、流場及地形變遷之數值模式,可分別計算突堤結構物下游之波、流場特性及灘線長期變遷情形。數值模擬中,探討深海波向角、波浪週期、突堤長度及底床坡度等各項條件,對下游灘線侵蝕之影響。數值模擬結果顯示,若深海波向角度或突堤長度增加時,突堤下游灘線之最遠侵蝕距離與最大後退量兩者皆有增加的趨勢。但當底床坡度變陡時,突堤下游灘線之侵蝕程度則呈現減少之趨勢;而在相同波高條件下,當波浪週期增加時,突堤下游灘線之侵蝕亦呈減少情況;本文依據數值模擬之結果提出突堤下游灘線後退量及侵蝕距離推估之經驗公式。本研究另比較拋物線型岬灣公式與本文數值模擬預測突堤下游灘線之結果。
In this paper, a numerical simulation model was established to investigate the long-term shoreline changes downcoast behind a groin. The model included three parts, namely the wave model, the current model, and the shoreline change model. In the numerical simulations, various combinations of wave conditions and the groin length were calculated to explore the effect of groin to the shoreline change. The numerical results indicated that the erosion downcoast behind the groin would be increasing as the groin length increasing. It was also shown that erosion would be increasing as the incident angles of wave increasing. The wave period and the bottom slope were also the effect factors to the erosions downcoast. The larger values of the bottom slope would induce smaller erosions downcoast. For a wave height condition, the erosion also decreased with the increasing the wave period. According to the numerical results, this paper proposed empirical formulas to predict the erosion downcoast behind a groin, which includes the erosion distance from the origin shoreline and the horizontal distance from the groin. Finally, this paper compared the numerical prediction of the shoreline with the use of the parabolic polynomial of a bay shape proposed in Hsu and Evans (1989).
目錄
摘要 Ⅰ
ABSTRACT Ⅱ
目錄 Ⅲ
表、圖目錄 Ⅵ
符號說明 Ⅸ
第一章 前言 1
1-1 研究動機與目的 1
1-2 文獻回顧 3
1-3 本文組織 7
第二章 數值計算模式之建立 8
2-1 波場數值模式 8
2-1-1基本控制方程式 9
2-1-2碎波控制指標 10
2-1-3邊界條件 11
2-2 流場數值模式 12
2-2-1基本控制方程式 12
2-2-2邊界條件 14
2-3灘線變遷計算模式 14
2-3-1沿岸輸砂量計算 15
2-3-2單線模式 18
2-3-3灘線長期變遷計算 19
2-4 計算流程 21
第三章 計算結果與分析 22
3-1 計算條件 22
3-2 模式驗證 22
3-3 波、流場及灘線長期變遷計算結果 24
3-3-1深海波向角之影響 24
3-3-2突堤長度之影響 26
3-3-3波浪週期之影響 28
3-3-4底床坡度之影響 29
3-3-5綜合討論 29
3-4 與拋物線型岬灣公式的結果比較 31
第四章 結論與建議 34
4-1 結論 34
4-2 建議 35
參考文獻 36
1. Coplend, G. J. M., (1985). A practical alternative to mild-slope wave equation. Coastal Engineering, 9, 125-149.
2. Dean, R. G., (1977). Equilibrium beach profiles: U.S. Atlantic and Gulf coasts. Department of Civil Engineering, Ocean Report No. 12, University of Delaware, Newark, DE, USA.
3. Ebersole, B. A., M. A. Cialone, and M. D. Prater (1986). Regional coastal processes numerical modeling system, Report 1, RCPWAVE-A linearwave propogation model for engineering use, Technical Report CERC-86-4. Coastal Engineering Res. Center, U.S. Army Corps of Engineers, Waterways Experiment Station, MS.
4. Goda, Y., (1975). Irregular wave deformation in the surf zone. Coastal Engineering in Japan, 18, 13-26.
5. Gravens, M. B., N. C. Kraus and H. Hanson. (1991). GENESIS-Generalized model for simulating shoreline change, Instruction Report CERC-89-19, U.S. Army Corps. of Engineers, Waterways Experiment Station, Vicksburg, MS.
6. Hallermeier, R. J. (1981). A profile zonation for seasonal sand beaches from wave climate. Coastal Engineering, 4, 253-277.
7. Hallermeier, R. J. (1983). Sand transport limits in coastal structure design. Proceedings, Coastal Structures ''83, American Society of Civil Engineers, pp. 703-716.
8. Hanson, H. and N. C. Kraus. (1989). GENESIS-Generalized model for simulate shoreline change, Report 1, Technical Reference. Technical Report CERC-89-19,” Coastal Engineering Res. Center, U.S. Army Corps of Engineers, Waterways Experiment Station, MS.
9. Horikawa, K. and C. Sonu. (1958). An experimental study on the effect of coastal groins. Coastal Engineering in Japan, 1, 59-74.
10. Hsu, J. R. C. and C. Evans, (1989). Parabolic bay shape and applications. Proceedings, Institution of Civil Engineering, Part 2, London: Thomas Telford, 87, 557-570.
11. Klein A. H. F., A. Vargas, A. Varges, A. L. A. Raabe and J. R. C. Hsu, (2003). Visual assessment of bayed beach stability with computer software. Computers and Geosciences, 29, 1249-1257.
12. Komar, P. H. and D. L. Inman. (1970). Longshore sand transport on beaches. Journal of Geophysical Research, 75, 5914-5927.
13. Kraus, N. C., K. J. Gingerich, and J. D. Rosati, (1988). Toward an improved empirical formula for longshore sand transport. Proceedings, 21th International Conference on Coastal Engineering, American Society of Civil Engineers, 2, 1182-1196.
14. Kraus, N. C., and S. Harikai(1983). Numerical model of the shoreline change at Oarai Beach. Coastal Engineering, 7(1), 1-28.
15. Kraus, N. C., S. Harikai, and S. Kubota, (1981). A numerical simulation of shoreline evolution at Oarai Beach. Proceedings, 21th Japanese Conference on Coastal Engineering In Japan, JSCE, 295-299.
16. Longuet-Higgins, M. S. and R. W. Stewart, (1964). Radiation stress in water wave — a physical discussion with applications. Deep-Sea Research, 11(4), 13-26.
17. Longuet-Higgins, M. S. (1970). Longshore current generated by obliquely incident sea wave, Journal of Geophysical Research, 75(33), 6778-6801.
18. Nagai, S.(1956). Arrangements of groins on a sandy beach, J. Waterways and Harbors Division, ASCE, 82(WW2), Paper No. 1063.
19. Nishimura, H., K. Maruyama and T. Sakuria(1985). On the numerical computation of nearshore current. Coastal Engineering in Japan, 28, 137-145.
20. Ozasa, H. and A. H. Brampton(1980). Mathematical modeling of beaches backed by seawells. Coastal Engineering, 14, 47-64.
21. Pelnard-Considere, R.(1956). Essai de theorie de l''evolution des forms de vivage en plages de sable et de dalets. IVeme Journees de l''Hydraulique, Les Energies de la Mer, Question III, Report, No. 1, pp. 289-298.
22. Perlin, M. and R. G. Dean(1983). A numerical model to simulate sediment transport in vicinity of coastal structures. Miscellaneous Report 83-10, Coastal Engineering Res. Center, U.S. Army Corps of Engineers, VA.
23. Shuto, N. (1974). Nonlinear long wave in a channel of variable section. Coastal Engineering in Japan, 17, 1-12.
24. Tsai, C. P., H. B. Chen, and J. R. C. Hsu, (2001). Calculations of wave transformation across the surf zone,” Ocean Engineering, 28(8), 941-955.
25. Watanabe, A. and K. Maruyama (1986). Numerical modeling of nearshore wave field under combined refraction, diffraction and breaking. Coastal Engineering in Japan, 29, 19-39.
26. Watanabe, A., K. Maruyama, T. Shimizu, and T. Sakakiyama (1986). Numerical prediction model of three- dimensional beach deformation around a structure. Coastal Engineering in Japan, 29, 179-194.
27. 椹木亨、出口一郎(1982),「突堤沿岸漂砂捕捉機能關係研究」,日本海岸工學演講論文集第29回,第279-283頁。
28. 藍振武(1987),「有限長度突堤設置對海岸地形變化影響」,第9屆海洋工程研討會論文集,第516-523頁。
29. 蔡清標(1995),「突堤對波浪流場及沿岸地形變化影響之預測模式(Ⅱ)」,國科會研究報告,計畫編號NSC84-2621-P-005-022B。
30. 林銘崇、江允智、劉景毅(1996),「台灣中西部海岸漂砂估算式之研究」,第18屆海洋工程研討會論文集,第619-626頁。
31. 蔡立宏、蔡金吉、徐如娟、黃清和(1996),「模擬漂沙移動行為-突堤群水工模型試驗研究」,第18屆海洋工程研討會論文集,第694-702頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top